青藏高原近几十年来的综合暖湿趋势

IF 5.9 1区 地球科学 Q1 ENGINEERING, CIVIL Journal of Hydrology Pub Date : 2024-07-02 DOI:10.1016/j.jhydrol.2024.131599
Yifeng Yu , Qinglong You , Yuqing Zhang , Zheng Jin , Shichang Kang , Panmao Zhai
{"title":"青藏高原近几十年来的综合暖湿趋势","authors":"Yifeng Yu ,&nbsp;Qinglong You ,&nbsp;Yuqing Zhang ,&nbsp;Zheng Jin ,&nbsp;Shichang Kang ,&nbsp;Panmao Zhai","doi":"10.1016/j.jhydrol.2024.131599","DOIUrl":null,"url":null,"abstract":"<div><p>The integrated warm-wet trends over the Tibetan Plateau (TP) have posed a vital influence on human society and natural ecosystem in recent decades. However, there is currently a lack of in-depth research on the trends over the TP. In this study, CN05.1 high-resolution grid data and ERA5 reanalysis data were analyzed to explore temporal and spatial changes of the integrated warm-wet trends over the TP during 1961-2020 based on temperature, precipitation and the new defined Warm-Wet index (WWI). The results are shown as follow: (1) Temporally, annual surface mean temperature (0.34°C per decade), precipitation (0.73% per decade), latent heat flux (0.08W·m<sup>-2</sup> per decade), and sensible heat flux (0.19W·m<sup>-2</sup> per decade) have overall increased over the TP. Further, defined by the above climate variables, WWI has increased in the most regions from 1960s to 1980s, then the variations have become relatively mild in the following two decades. (2) Spatially, WWI has finally formed a pattern of significant increase in the semi-humid region and eastern semi-arid region and significant decrease in the humid region, which is similar to precipitation. Noticeably, arid region, semi-arid region, and semi-humid region have all experienced significant increase of WWI but humid regions have experienced decrease. That is, the relatively dry regions over the TP have become warmer-wetter but the relatively wet regions have become warmer-drier. (3) In addition, seasonal asymmetric has been revealed, and winter has experienced the most significant warming-wetting in spite of the smallest values of temperature and precipitation in climatology. (4) Finally, among all independent variables, precipitation contributes the most to the variations of WWI over the entire TP, while temperature is crucial in the arid region and surface heat flux plays an important role in the humid region. Our findings may provide additional insights regarding the risk evaluation over the TP, and the proposed framework to evaluate the trends over different climate zones could also offer a meaningful guide to other regions.</p></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated warm-wet trends over the Tibetan Plateau in recent decades\",\"authors\":\"Yifeng Yu ,&nbsp;Qinglong You ,&nbsp;Yuqing Zhang ,&nbsp;Zheng Jin ,&nbsp;Shichang Kang ,&nbsp;Panmao Zhai\",\"doi\":\"10.1016/j.jhydrol.2024.131599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The integrated warm-wet trends over the Tibetan Plateau (TP) have posed a vital influence on human society and natural ecosystem in recent decades. However, there is currently a lack of in-depth research on the trends over the TP. In this study, CN05.1 high-resolution grid data and ERA5 reanalysis data were analyzed to explore temporal and spatial changes of the integrated warm-wet trends over the TP during 1961-2020 based on temperature, precipitation and the new defined Warm-Wet index (WWI). The results are shown as follow: (1) Temporally, annual surface mean temperature (0.34°C per decade), precipitation (0.73% per decade), latent heat flux (0.08W·m<sup>-2</sup> per decade), and sensible heat flux (0.19W·m<sup>-2</sup> per decade) have overall increased over the TP. Further, defined by the above climate variables, WWI has increased in the most regions from 1960s to 1980s, then the variations have become relatively mild in the following two decades. (2) Spatially, WWI has finally formed a pattern of significant increase in the semi-humid region and eastern semi-arid region and significant decrease in the humid region, which is similar to precipitation. Noticeably, arid region, semi-arid region, and semi-humid region have all experienced significant increase of WWI but humid regions have experienced decrease. That is, the relatively dry regions over the TP have become warmer-wetter but the relatively wet regions have become warmer-drier. (3) In addition, seasonal asymmetric has been revealed, and winter has experienced the most significant warming-wetting in spite of the smallest values of temperature and precipitation in climatology. (4) Finally, among all independent variables, precipitation contributes the most to the variations of WWI over the entire TP, while temperature is crucial in the arid region and surface heat flux plays an important role in the humid region. Our findings may provide additional insights regarding the risk evaluation over the TP, and the proposed framework to evaluate the trends over different climate zones could also offer a meaningful guide to other regions.</p></div>\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022169424009958\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169424009958","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

近几十年来,青藏高原的综合暖湿趋势对人类社会和自然生态系统产生了至关重要的影响。然而,目前缺乏对青藏高原暖湿化趋势的深入研究。本研究分析了 CN05.1 高分辨率网格数据和 ERA5 再分析数据,基于温度、降水和新定义的暖湿指数(WWI),探讨了 1961-2020 年间青藏高原综合暖湿趋势的时空变化。结果如下(1) 从时间上看,大洋洲年平均地表温度(每十年 0.34°C)、降水量(每十年 0.73%)、潜热通量(每十年 0.08W-m-2)和显热通量(每十年 0.19W-m-2)总体呈上升趋势。此外,根据上述气候变量的定义,从 20 世纪 60 年代到 80 年代,WWI 在大多数地区都有所增加,随后 20 年的变化相对温和。(2)从空间上看,WWI 最终形成了半湿润地区和东部半干旱地区显著增加、湿润地区显著减少的格局,这与降水相似。值得注意的是,干旱地区、半干旱地区和半湿润地区的 WWI 都有显著增加,而湿润地区则有所减少。也就是说,大陆架上相对干旱的地区变暖变湿,而相对湿润的地区变暖变干。(3) 此外,还发现了季节不对称现象,尽管气候学中的气温和降水值最小,但冬季却经历了最显著的增温-增湿。(4) 最后,在所有自变量中,降水对整个热带降雨带的 WWI 变化贡献最大,而温度在干旱地区至关重要,地表热通量在潮湿地区起着重要作用。我们的研究结果可能会为大洋洲地区的风险评估提供更多的启示,所提出的评估不同气候区趋势的框架也可以为其他地区提供有意义的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrated warm-wet trends over the Tibetan Plateau in recent decades

The integrated warm-wet trends over the Tibetan Plateau (TP) have posed a vital influence on human society and natural ecosystem in recent decades. However, there is currently a lack of in-depth research on the trends over the TP. In this study, CN05.1 high-resolution grid data and ERA5 reanalysis data were analyzed to explore temporal and spatial changes of the integrated warm-wet trends over the TP during 1961-2020 based on temperature, precipitation and the new defined Warm-Wet index (WWI). The results are shown as follow: (1) Temporally, annual surface mean temperature (0.34°C per decade), precipitation (0.73% per decade), latent heat flux (0.08W·m-2 per decade), and sensible heat flux (0.19W·m-2 per decade) have overall increased over the TP. Further, defined by the above climate variables, WWI has increased in the most regions from 1960s to 1980s, then the variations have become relatively mild in the following two decades. (2) Spatially, WWI has finally formed a pattern of significant increase in the semi-humid region and eastern semi-arid region and significant decrease in the humid region, which is similar to precipitation. Noticeably, arid region, semi-arid region, and semi-humid region have all experienced significant increase of WWI but humid regions have experienced decrease. That is, the relatively dry regions over the TP have become warmer-wetter but the relatively wet regions have become warmer-drier. (3) In addition, seasonal asymmetric has been revealed, and winter has experienced the most significant warming-wetting in spite of the smallest values of temperature and precipitation in climatology. (4) Finally, among all independent variables, precipitation contributes the most to the variations of WWI over the entire TP, while temperature is crucial in the arid region and surface heat flux plays an important role in the humid region. Our findings may provide additional insights regarding the risk evaluation over the TP, and the proposed framework to evaluate the trends over different climate zones could also offer a meaningful guide to other regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydrology
Journal of Hydrology 地学-地球科学综合
CiteScore
11.00
自引率
12.50%
发文量
1309
审稿时长
7.5 months
期刊介绍: The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.
期刊最新文献
Dam-break flood hazard and risk assessment of large dam for emergency preparedness: A study of Ukai Dam, India Analytical model of contaminant advection, diffusion and degradation in capped sediments and sensitivity to flow and sediment properties High-resolution monitoring of soil infiltration using distributed fiber optic A hydro-geomorphologic assessment of flood generation potentiality in ungauged sub-basins and their prioritization based on traditional, statistical, MCDM and Nash-GIUH models of a tropical plateau-fringe River The causes of algal blooms exist significant scale effect in tributary of the Three Gorges Reservoir
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1