Haoyu Shi , Guilin Yang , Hao Nan Li , Jie Zhao , Hongtao Yu , Chi Zhang
{"title":"具有准对称结构的基于挠性和运动解耦的 XYZ 纳米定位平台","authors":"Haoyu Shi , Guilin Yang , Hao Nan Li , Jie Zhao , Hongtao Yu , Chi Zhang","doi":"10.1016/j.precisioneng.2024.06.014","DOIUrl":null,"url":null,"abstract":"<div><p>Piezoelectric-driven flexure-based multi-DOF motion stages have been widely employed for nano-positioning applications, in which motion-decoupled stages have been extensively investigated in order to facilitate their motion control efforts. Asymmetric motion-decoupled stage designs are simple in configurations and structures, but would cause parasitic shifts of the moving platform. Fully-symmetric motion-decoupled stage designs can minimize parasitic shifts, but would result in complicated configurations and structures. To tackle such difficulties, a new flexure-based motion-decoupled XYZ stage with a quasi-symmetric 3-Prismatic-Prismatic-Prismatic (3-PPP) configuration is proposed in this work. By adding short flexure-based auxiliary supports to the moving platform, a compact quasi-symmetric stage design is achieved, and the parasitic shifts of the moving platform are significantly reduced. To study the kinetostatic performance of the demonstrated embodiment, an analytic stiffness model is formulated and validated by the FEA method. To achieve minimal parasitic shifts, a stiffness matching approach is proposed for the design optimization of structural parameters. A research prototype of the quasi-symmetric stage is fabricated for experimental validation. Experimental results show that the stage achieves workspace of 43.6 μm × 40.3 μm × 63.2 μm, motion resolution of 25 nm, and parasitic shifts of less than 0.94 %, which indicates that the proposed quasi-symmetric design method is effective to reduce the parasitic shifts of the flexure-based nano-positioning stages.</p></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"89 ","pages":"Pages 239-251"},"PeriodicalIF":3.5000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A flexure-based and motion-decoupled XYZ nano-positioning stage with a quasi-symmetric structure\",\"authors\":\"Haoyu Shi , Guilin Yang , Hao Nan Li , Jie Zhao , Hongtao Yu , Chi Zhang\",\"doi\":\"10.1016/j.precisioneng.2024.06.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Piezoelectric-driven flexure-based multi-DOF motion stages have been widely employed for nano-positioning applications, in which motion-decoupled stages have been extensively investigated in order to facilitate their motion control efforts. Asymmetric motion-decoupled stage designs are simple in configurations and structures, but would cause parasitic shifts of the moving platform. Fully-symmetric motion-decoupled stage designs can minimize parasitic shifts, but would result in complicated configurations and structures. To tackle such difficulties, a new flexure-based motion-decoupled XYZ stage with a quasi-symmetric 3-Prismatic-Prismatic-Prismatic (3-PPP) configuration is proposed in this work. By adding short flexure-based auxiliary supports to the moving platform, a compact quasi-symmetric stage design is achieved, and the parasitic shifts of the moving platform are significantly reduced. To study the kinetostatic performance of the demonstrated embodiment, an analytic stiffness model is formulated and validated by the FEA method. To achieve minimal parasitic shifts, a stiffness matching approach is proposed for the design optimization of structural parameters. A research prototype of the quasi-symmetric stage is fabricated for experimental validation. Experimental results show that the stage achieves workspace of 43.6 μm × 40.3 μm × 63.2 μm, motion resolution of 25 nm, and parasitic shifts of less than 0.94 %, which indicates that the proposed quasi-symmetric design method is effective to reduce the parasitic shifts of the flexure-based nano-positioning stages.</p></div>\",\"PeriodicalId\":54589,\"journal\":{\"name\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"volume\":\"89 \",\"pages\":\"Pages 239-251\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141635924001442\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635924001442","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
A flexure-based and motion-decoupled XYZ nano-positioning stage with a quasi-symmetric structure
Piezoelectric-driven flexure-based multi-DOF motion stages have been widely employed for nano-positioning applications, in which motion-decoupled stages have been extensively investigated in order to facilitate their motion control efforts. Asymmetric motion-decoupled stage designs are simple in configurations and structures, but would cause parasitic shifts of the moving platform. Fully-symmetric motion-decoupled stage designs can minimize parasitic shifts, but would result in complicated configurations and structures. To tackle such difficulties, a new flexure-based motion-decoupled XYZ stage with a quasi-symmetric 3-Prismatic-Prismatic-Prismatic (3-PPP) configuration is proposed in this work. By adding short flexure-based auxiliary supports to the moving platform, a compact quasi-symmetric stage design is achieved, and the parasitic shifts of the moving platform are significantly reduced. To study the kinetostatic performance of the demonstrated embodiment, an analytic stiffness model is formulated and validated by the FEA method. To achieve minimal parasitic shifts, a stiffness matching approach is proposed for the design optimization of structural parameters. A research prototype of the quasi-symmetric stage is fabricated for experimental validation. Experimental results show that the stage achieves workspace of 43.6 μm × 40.3 μm × 63.2 μm, motion resolution of 25 nm, and parasitic shifts of less than 0.94 %, which indicates that the proposed quasi-symmetric design method is effective to reduce the parasitic shifts of the flexure-based nano-positioning stages.
期刊介绍:
Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.