具有可调 d 间距的交联氧化石墨烯复合膜的更强透水性和防污特性

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Pub Date : 2024-07-01 DOI:10.1016/j.memsci.2024.123044
Nan Sun , Huan Wang , Huazhang Zhao , Fangqin Cheng , Jianfeng Li
{"title":"具有可调 d 间距的交联氧化石墨烯复合膜的更强透水性和防污特性","authors":"Nan Sun ,&nbsp;Huan Wang ,&nbsp;Huazhang Zhao ,&nbsp;Fangqin Cheng ,&nbsp;Jianfeng Li","doi":"10.1016/j.memsci.2024.123044","DOIUrl":null,"url":null,"abstract":"<div><p>Low flux and membrane fouling are major challenges in membrane distillation (MD) for treating concentrated wastewater. This study compared the performance of GO composite membranes with different interlayer distances, by covalently bonding the terminal amine groups of ethylenediamine (EDA) and 1,12-diaminododecane (DADD) with the carboxyl groups present on the GO sheets. The results indicated that the GO-DADD/PTFE membrane, with longer carbon chain cross-linking, achieved the highest flux and antifouling properties. At 70 °C, the pure water flux reached 68.5 kg/m<sup>2</sup>·h, and the fluxes for treating NaCl, HA containing NaCl, and BSA containing NaCl were 29.8 %, 37.1 %, and 38.5 % higher than the uncrosslinked GO/PTFE, and 95.7 %, 121.2 %, and 146.9 % higher than the PTFE membrane, respectively. Through mathematical models for mass and heat transfer, the study identified the key to this enhancement as the increased d-spacing within the GO layer due to cross-linking, which weakened the Kelvin effect and enhanced the vapor partial pressure on the hot side. The unique surface structure and electrostatic interactions induced by long-chain cross-linking further boosted the antifouling effect. These modifications not only overcome the typical trade-off between retention rates and flux but also offer a scalable and efficient solution for advanced membrane distillation applications.</p></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":null,"pages":null},"PeriodicalIF":8.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced water permeability and antifouling properties of cross-linked graphene oxide composite membranes with tunable d-spacings\",\"authors\":\"Nan Sun ,&nbsp;Huan Wang ,&nbsp;Huazhang Zhao ,&nbsp;Fangqin Cheng ,&nbsp;Jianfeng Li\",\"doi\":\"10.1016/j.memsci.2024.123044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Low flux and membrane fouling are major challenges in membrane distillation (MD) for treating concentrated wastewater. This study compared the performance of GO composite membranes with different interlayer distances, by covalently bonding the terminal amine groups of ethylenediamine (EDA) and 1,12-diaminododecane (DADD) with the carboxyl groups present on the GO sheets. The results indicated that the GO-DADD/PTFE membrane, with longer carbon chain cross-linking, achieved the highest flux and antifouling properties. At 70 °C, the pure water flux reached 68.5 kg/m<sup>2</sup>·h, and the fluxes for treating NaCl, HA containing NaCl, and BSA containing NaCl were 29.8 %, 37.1 %, and 38.5 % higher than the uncrosslinked GO/PTFE, and 95.7 %, 121.2 %, and 146.9 % higher than the PTFE membrane, respectively. Through mathematical models for mass and heat transfer, the study identified the key to this enhancement as the increased d-spacing within the GO layer due to cross-linking, which weakened the Kelvin effect and enhanced the vapor partial pressure on the hot side. The unique surface structure and electrostatic interactions induced by long-chain cross-linking further boosted the antifouling effect. These modifications not only overcome the typical trade-off between retention rates and flux but also offer a scalable and efficient solution for advanced membrane distillation applications.</p></div>\",\"PeriodicalId\":368,\"journal\":{\"name\":\"Journal of Membrane Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376738824006380\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824006380","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

低通量和膜堵塞是膜蒸馏(MD)处理浓缩废水的主要挑战。本研究通过共价键合乙二胺(EDA)和 1,12-二氨基十二烷(DADD)的末端胺基与 GO 片上的羧基,比较了不同层间距离的 GO 复合膜的性能。结果表明,碳链交联较长的 GO-DADD/PTFE 膜具有最高的通量和防污性能。在 70 °C 时,纯水通量达到 68.5 kg/m2-h,处理 NaCl、含 NaCl 的 HA 和含 NaCl 的 BSA 的通量分别比未交联的 GO/PTFE 高 29.8%、37.1% 和 38.5%,比 PTFE 膜高 95.7%、121.2% 和 146.9%。通过质量和热量传递的数学模型,研究发现这种提高的关键在于交联导致的 GO 层内 d 间距的增加,这削弱了开尔文效应,提高了热侧的蒸汽分压。长链交联产生的独特表面结构和静电相互作用进一步增强了防污效果。这些改性不仅克服了保留率和通量之间的典型权衡,还为先进的膜蒸馏应用提供了可扩展的高效解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced water permeability and antifouling properties of cross-linked graphene oxide composite membranes with tunable d-spacings

Low flux and membrane fouling are major challenges in membrane distillation (MD) for treating concentrated wastewater. This study compared the performance of GO composite membranes with different interlayer distances, by covalently bonding the terminal amine groups of ethylenediamine (EDA) and 1,12-diaminododecane (DADD) with the carboxyl groups present on the GO sheets. The results indicated that the GO-DADD/PTFE membrane, with longer carbon chain cross-linking, achieved the highest flux and antifouling properties. At 70 °C, the pure water flux reached 68.5 kg/m2·h, and the fluxes for treating NaCl, HA containing NaCl, and BSA containing NaCl were 29.8 %, 37.1 %, and 38.5 % higher than the uncrosslinked GO/PTFE, and 95.7 %, 121.2 %, and 146.9 % higher than the PTFE membrane, respectively. Through mathematical models for mass and heat transfer, the study identified the key to this enhancement as the increased d-spacing within the GO layer due to cross-linking, which weakened the Kelvin effect and enhanced the vapor partial pressure on the hot side. The unique surface structure and electrostatic interactions induced by long-chain cross-linking further boosted the antifouling effect. These modifications not only overcome the typical trade-off between retention rates and flux but also offer a scalable and efficient solution for advanced membrane distillation applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
期刊最新文献
Electrochemical degradation of small molecule dyes by TiO2-decorated polyacrylonitrile nanofiber membranes with superior properties High-performance polybenzimidazole composite membranes doped with nitrogen-rich porous nanosheets for high-temperature fuel cells An electrospun iron oxychloride/polyacrylonitrile nanofibrous membrane with superhydrophilic and excellent regeneration properties: Achieving superior oil-in-water emulsion separation Enhanced osmotic power generation through anodic electrodeposited MOFs@MXene heterostructured nanochannels Preparation and application of highly oriented MFI zeolite membranes for efficient pervaporation recovery of organic solvents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1