质子交换膜燃料电池的尺度桥模型:了解多物理场传输、电化学反应和异质老化之间的相互作用

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Energy Pub Date : 2024-07-02 DOI:10.1016/j.nanoen.2024.109957
Mingsheng Hao, Yubo Hu, Shengyuan Chen, Yinshi Li
{"title":"质子交换膜燃料电池的尺度桥模型:了解多物理场传输、电化学反应和异质老化之间的相互作用","authors":"Mingsheng Hao,&nbsp;Yubo Hu,&nbsp;Shengyuan Chen,&nbsp;Yinshi Li","doi":"10.1016/j.nanoen.2024.109957","DOIUrl":null,"url":null,"abstract":"<div><p>The lifetime issues caused by catalyst degradation is one of the most critical challenges for the commercial application of proton exchange membrane fuel cells. However, the understanding concerning the interactions among transport, reaction, and catalyst degradation is inadequate for further durability enhancement. Herein, a scale-bridging model that couples a cell-scaled model to reveal the reactive transport process and a catalyst-scaled model to unveil Pt degradation is proposed to capture the degradation characteristics. It is found that the heterogeneous aging is observed in both the through-plane and channel-rib directions due to the enhanced mass loss near the membrane and the water accumulation under the rib, resulting in the mitigation of the core reaction region away from the membrane, thereby causing an increase in ohmic loss after cycles. More importantly, the local oxygen transport resistance increases with degradation, leading to a remarkable cell performance loss under high current density. Additionally, the influences of cell voltage load and inlet humidity on Pt degradation are also investigated. And the proposed gradient catalyst layer shows a significant mitigating effect on Pt degradation. This work reveals the degradation-performance interactions, which is conducive to design the high-performance fuel cell to prolong lifetime.</p></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A scale-bridging model for proton exchange membrane fuel cells: Understanding interactions among multi-physics transports, electrochemical reactions and heterogeneous aging\",\"authors\":\"Mingsheng Hao,&nbsp;Yubo Hu,&nbsp;Shengyuan Chen,&nbsp;Yinshi Li\",\"doi\":\"10.1016/j.nanoen.2024.109957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The lifetime issues caused by catalyst degradation is one of the most critical challenges for the commercial application of proton exchange membrane fuel cells. However, the understanding concerning the interactions among transport, reaction, and catalyst degradation is inadequate for further durability enhancement. Herein, a scale-bridging model that couples a cell-scaled model to reveal the reactive transport process and a catalyst-scaled model to unveil Pt degradation is proposed to capture the degradation characteristics. It is found that the heterogeneous aging is observed in both the through-plane and channel-rib directions due to the enhanced mass loss near the membrane and the water accumulation under the rib, resulting in the mitigation of the core reaction region away from the membrane, thereby causing an increase in ohmic loss after cycles. More importantly, the local oxygen transport resistance increases with degradation, leading to a remarkable cell performance loss under high current density. Additionally, the influences of cell voltage load and inlet humidity on Pt degradation are also investigated. And the proposed gradient catalyst layer shows a significant mitigating effect on Pt degradation. This work reveals the degradation-performance interactions, which is conducive to design the high-performance fuel cell to prolong lifetime.</p></div>\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211285524007067\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285524007067","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

催化剂降解引起的寿命问题是质子交换膜燃料电池商业应用面临的最严峻挑战之一。然而,人们对传输、反应和催化剂降解之间相互作用的了解还不足以进一步提高耐用性。本文提出了一个尺度桥接模型,将揭示反应传输过程的细胞尺度模型和揭示铂降解的催化剂尺度模型结合起来,以捕捉降解特征。研究发现,由于膜附近的质量损失和膜肋下的积水增加,导致核心反应区远离膜的情况减轻,从而导致循环后的欧姆损耗增加,因此在通面和沟道肋两个方向上都观察到了异质老化。更重要的是,局部氧传输电阻会随着降解而增加,导致高电流密度下电池性能显著下降。此外,还研究了电池电压负载和入口湿度对铂降解的影响。所提出的梯度催化剂层对铂降解有显著的缓解作用。这项研究揭示了降解与性能之间的相互作用,有利于设计高性能燃料电池,延长其使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A scale-bridging model for proton exchange membrane fuel cells: Understanding interactions among multi-physics transports, electrochemical reactions and heterogeneous aging

The lifetime issues caused by catalyst degradation is one of the most critical challenges for the commercial application of proton exchange membrane fuel cells. However, the understanding concerning the interactions among transport, reaction, and catalyst degradation is inadequate for further durability enhancement. Herein, a scale-bridging model that couples a cell-scaled model to reveal the reactive transport process and a catalyst-scaled model to unveil Pt degradation is proposed to capture the degradation characteristics. It is found that the heterogeneous aging is observed in both the through-plane and channel-rib directions due to the enhanced mass loss near the membrane and the water accumulation under the rib, resulting in the mitigation of the core reaction region away from the membrane, thereby causing an increase in ohmic loss after cycles. More importantly, the local oxygen transport resistance increases with degradation, leading to a remarkable cell performance loss under high current density. Additionally, the influences of cell voltage load and inlet humidity on Pt degradation are also investigated. And the proposed gradient catalyst layer shows a significant mitigating effect on Pt degradation. This work reveals the degradation-performance interactions, which is conducive to design the high-performance fuel cell to prolong lifetime.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
期刊最新文献
Robust water/seawater-electrolysis hydrogen production at industrial-scale current densities by modulating built-in-outer electric field of catalytic substance Corrigendum to “Unlocking the potential of antisolvent-free perovskite solar cells: Modulating crystallization and intermediates through a binary volatile additive strategy” [Nano Energy 124 (2024) 109487] Multifunctional wearable triboelectric nanogenerators prepared by combined crystallization and diffusion method: High-output, breathable, antimicrobial, and Janus-wettability for smart control and self-powered biosensing Highly sensitive self-powered biosensor for real-time monitoring and early warning of human health and motion state Flame-retardant textile based triboelectric nanogenerators for energy harvesting and high-temperature sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1