管道壁腐蚀造成厚度损失的自补偿超声测量误差分析

IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS Ultrasonics Pub Date : 2024-06-28 DOI:10.1016/j.ultras.2024.107387
Marcelo Y. Matuda , Nicolás Pérez , Flávio Buiochi , Julio C. Adamowski , Marcos S.G. Tsuzuki
{"title":"管道壁腐蚀造成厚度损失的自补偿超声测量误差分析","authors":"Marcelo Y. Matuda ,&nbsp;Nicolás Pérez ,&nbsp;Flávio Buiochi ,&nbsp;Julio C. Adamowski ,&nbsp;Marcos S.G. Tsuzuki","doi":"10.1016/j.ultras.2024.107387","DOIUrl":null,"url":null,"abstract":"<div><p>The ultrasonic pulse-echo technique is widely employed to measure the wall thickness reduction due to corrosion in pipelines. Ultrasonic monitoring is noninvasive and can be performed online to evaluate the structural health of pipelines. Although ultrasound is a robust technique, it presents two main difficulties arising from the temperature variation in the medium being monitored: the mechanical assembly must have high stability and the ultrasonic propagation velocity must take into account the temperature variation. In this paper, a detailed strategy is presented to compensate for changes in the propagation velocity whenever the temperature changes. The method is considered self-compensated because the calibration data is obtained from the ultrasonic signals captured using the pipe under evaluation. The analysis of systematic errors in the temperature compensation is presented, first considering that a reference initial pipe thickness is given, and second when a reference sound velocity is given. The technique was evaluated under laboratory conditions using a closed loop with accelerated corrosion through the use of continuous flow saline water containing sand. In this test, the ultrasonic results were compared with the traditional coupon method used to determine corrosion loss. The results show that the self-compensated method was able to compensate for temperature fluctuations, and the total thickness loss measured by the ultrasound technique was close to the value measured by the coupons. Finally, the measurement system was tested in a production pipeline exposed to sunlight. The results show that the self-compensated method can reduce the oscillations in the thickness loss readings, caused by temperature swings, but large temperature variations cannot be completely compensated for. This experiment also shows the effects of low mechanical stability, which caused completely invalid results.</p></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"142 ","pages":"Article 107387"},"PeriodicalIF":3.8000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error analysis of self-compensated ultrasound measurements of the thickness loss due to corrosion in pipe walls\",\"authors\":\"Marcelo Y. Matuda ,&nbsp;Nicolás Pérez ,&nbsp;Flávio Buiochi ,&nbsp;Julio C. Adamowski ,&nbsp;Marcos S.G. Tsuzuki\",\"doi\":\"10.1016/j.ultras.2024.107387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ultrasonic pulse-echo technique is widely employed to measure the wall thickness reduction due to corrosion in pipelines. Ultrasonic monitoring is noninvasive and can be performed online to evaluate the structural health of pipelines. Although ultrasound is a robust technique, it presents two main difficulties arising from the temperature variation in the medium being monitored: the mechanical assembly must have high stability and the ultrasonic propagation velocity must take into account the temperature variation. In this paper, a detailed strategy is presented to compensate for changes in the propagation velocity whenever the temperature changes. The method is considered self-compensated because the calibration data is obtained from the ultrasonic signals captured using the pipe under evaluation. The analysis of systematic errors in the temperature compensation is presented, first considering that a reference initial pipe thickness is given, and second when a reference sound velocity is given. The technique was evaluated under laboratory conditions using a closed loop with accelerated corrosion through the use of continuous flow saline water containing sand. In this test, the ultrasonic results were compared with the traditional coupon method used to determine corrosion loss. The results show that the self-compensated method was able to compensate for temperature fluctuations, and the total thickness loss measured by the ultrasound technique was close to the value measured by the coupons. Finally, the measurement system was tested in a production pipeline exposed to sunlight. The results show that the self-compensated method can reduce the oscillations in the thickness loss readings, caused by temperature swings, but large temperature variations cannot be completely compensated for. This experiment also shows the effects of low mechanical stability, which caused completely invalid results.</p></div>\",\"PeriodicalId\":23522,\"journal\":{\"name\":\"Ultrasonics\",\"volume\":\"142 \",\"pages\":\"Article 107387\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041624X24001495\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X24001495","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

超声波脉冲回波技术被广泛用于测量管道腐蚀造成的壁厚减薄。超声波监测是非侵入性的,可以在线进行,以评估管道的结构健康状况。虽然超声波是一种稳健的技术,但由于被监测介质的温度变化,超声波监测存在两个主要困难:机械组件必须具有高稳定性,超声波传播速度必须考虑温度变化。本文介绍了一种在温度变化时补偿传播速度变化的详细策略。该方法被认为是自补偿的,因为校准数据是从使用被评估管道采集的超声波信号中获得的。对温度补偿中的系统误差进行了分析,首先考虑了给出参考初始管道厚度的情况,其次考虑了给出参考声速的情况。在实验室条件下,利用连续流动的含沙盐水加速腐蚀的闭合回路对该技术进行了评估。在这项测试中,超声波结果与用于确定腐蚀损失的传统试样方法进行了比较。结果表明,自补偿方法能够补偿温度波动,超声波技术测量的总厚度损失与试样测量的值接近。最后,测量系统在暴露于阳光下的生产管道中进行了测试。结果表明,自补偿方法可以减少由温度波动引起的厚度损失读数的振荡,但无法完全补偿较大的温度变化。该实验还显示了低机械稳定性的影响,它导致了完全无效的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Error analysis of self-compensated ultrasound measurements of the thickness loss due to corrosion in pipe walls

The ultrasonic pulse-echo technique is widely employed to measure the wall thickness reduction due to corrosion in pipelines. Ultrasonic monitoring is noninvasive and can be performed online to evaluate the structural health of pipelines. Although ultrasound is a robust technique, it presents two main difficulties arising from the temperature variation in the medium being monitored: the mechanical assembly must have high stability and the ultrasonic propagation velocity must take into account the temperature variation. In this paper, a detailed strategy is presented to compensate for changes in the propagation velocity whenever the temperature changes. The method is considered self-compensated because the calibration data is obtained from the ultrasonic signals captured using the pipe under evaluation. The analysis of systematic errors in the temperature compensation is presented, first considering that a reference initial pipe thickness is given, and second when a reference sound velocity is given. The technique was evaluated under laboratory conditions using a closed loop with accelerated corrosion through the use of continuous flow saline water containing sand. In this test, the ultrasonic results were compared with the traditional coupon method used to determine corrosion loss. The results show that the self-compensated method was able to compensate for temperature fluctuations, and the total thickness loss measured by the ultrasound technique was close to the value measured by the coupons. Finally, the measurement system was tested in a production pipeline exposed to sunlight. The results show that the self-compensated method can reduce the oscillations in the thickness loss readings, caused by temperature swings, but large temperature variations cannot be completely compensated for. This experiment also shows the effects of low mechanical stability, which caused completely invalid results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultrasonics
Ultrasonics 医学-核医学
CiteScore
7.60
自引率
19.00%
发文量
186
审稿时长
3.9 months
期刊介绍: Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed. As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.
期刊最新文献
Lamb wave imaging via dual-frequency fusion for grating lobe effect compensation Improving the signal-to-noise ratio of the laser ultrasonic synthetic aperture focusing technique to detect submillimeter internal defects using echo array similarity Research on the second-harmonic focused ultrasonic device based on micro-bubble contrast agents Generation of broadband airborne ultrasound using an Harmonic Acoustic Pneumatic Source Ultrafast laser-enabled optoacoustic characterization of three-dimensional, nanoscopic interior features of microchips
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1