基于多尺度随机区间矩法的频域非线性系统混合不确定性传播分析

IF 2.8 3区 工程技术 Q2 MECHANICS International Journal of Non-Linear Mechanics Pub Date : 2024-06-24 DOI:10.1016/j.ijnonlinmec.2024.104806
Gao Hong, Deng Zhongmin
{"title":"基于多尺度随机区间矩法的频域非线性系统混合不确定性传播分析","authors":"Gao Hong,&nbsp;Deng Zhongmin","doi":"10.1016/j.ijnonlinmec.2024.104806","DOIUrl":null,"url":null,"abstract":"<div><p>To quantify the impact of hybrid uncertainty (random and interval parameters) on the frequency-domain nonlinear dynamic response, the multi-scale method (MSM) and the random interval moment method (RIMM) are combined to establish a new uncertainty propagation analysis method, called the multi-scale random interval moment method (MS-RIMM). RIMM is used to describe the hybrid uncertainty, while MSM is used to determine the frequency-domain nonlinear dynamic response. The statistical characteristics (i.e., the expectation value and variance) of the amplitude-frequency response of the nonlinear system with hybrid uncertainties are derived. Furthermore, the accuracy and effectiveness of the proposed method are verified by comparing the results with those obtained using the multi-scale Monte Carlo simulation method (MS-MCSM). Overall, the results of this study can serve as a useful reference for the hybrid uncertainty propagation analysis of nonlinear systems and for predicting the frequency-domain nonlinear dynamic response.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid uncertainty propagation analysis of nonlinear systems in the frequency domain based on multi-scale random interval moment method\",\"authors\":\"Gao Hong,&nbsp;Deng Zhongmin\",\"doi\":\"10.1016/j.ijnonlinmec.2024.104806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To quantify the impact of hybrid uncertainty (random and interval parameters) on the frequency-domain nonlinear dynamic response, the multi-scale method (MSM) and the random interval moment method (RIMM) are combined to establish a new uncertainty propagation analysis method, called the multi-scale random interval moment method (MS-RIMM). RIMM is used to describe the hybrid uncertainty, while MSM is used to determine the frequency-domain nonlinear dynamic response. The statistical characteristics (i.e., the expectation value and variance) of the amplitude-frequency response of the nonlinear system with hybrid uncertainties are derived. Furthermore, the accuracy and effectiveness of the proposed method are verified by comparing the results with those obtained using the multi-scale Monte Carlo simulation method (MS-MCSM). Overall, the results of this study can serve as a useful reference for the hybrid uncertainty propagation analysis of nonlinear systems and for predicting the frequency-domain nonlinear dynamic response.</p></div>\",\"PeriodicalId\":50303,\"journal\":{\"name\":\"International Journal of Non-Linear Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Non-Linear Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020746224001719\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746224001719","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

为了量化混合不确定性(随机参数和区间参数)对频域非线性动态响应的影响,将多尺度法(MSM)和随机区间矩法(RIMM)相结合,建立了一种新的不确定性传播分析方法,称为多尺度随机区间矩法(MS-RIMM)。RIMM 用于描述混合不确定性,而 MSM 则用于确定频域非线性动态响应。得出了具有混合不确定性的非线性系统幅频响应的统计特征(即期望值和方差)。此外,通过与使用多尺度蒙特卡罗模拟法(MS-MCSM)得出的结果进行比较,验证了所提方法的准确性和有效性。总之,本研究的结果可作为非线性系统混合不确定性传播分析和频域非线性动态响应预测的有用参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid uncertainty propagation analysis of nonlinear systems in the frequency domain based on multi-scale random interval moment method

To quantify the impact of hybrid uncertainty (random and interval parameters) on the frequency-domain nonlinear dynamic response, the multi-scale method (MSM) and the random interval moment method (RIMM) are combined to establish a new uncertainty propagation analysis method, called the multi-scale random interval moment method (MS-RIMM). RIMM is used to describe the hybrid uncertainty, while MSM is used to determine the frequency-domain nonlinear dynamic response. The statistical characteristics (i.e., the expectation value and variance) of the amplitude-frequency response of the nonlinear system with hybrid uncertainties are derived. Furthermore, the accuracy and effectiveness of the proposed method are verified by comparing the results with those obtained using the multi-scale Monte Carlo simulation method (MS-MCSM). Overall, the results of this study can serve as a useful reference for the hybrid uncertainty propagation analysis of nonlinear systems and for predicting the frequency-domain nonlinear dynamic response.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
期刊最新文献
Cascaded robust fixed-time terminal sliding mode control for uncertain cartpole systems with incremental nonlinear dynamic inversion Study on nonlinear relaxation properties of composite solid propellant Neural networks based surrogate modeling for efficient uncertainty quantification and calibration of MEMS accelerometers Static analysis using flexibility disassembly perturbation for material nonlinear problem with uncertainty Nonparametric identification of multi-degree-of-freedom nonlinear systems from partially measured responses under uncertain dynamic excitations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1