{"title":"对物联网设备和服务器的可靠性、功耗和性能进行综合分析","authors":"Keqin Li","doi":"10.1016/j.sysarc.2024.103216","DOIUrl":null,"url":null,"abstract":"<div><p>The Internet of Things (IoT) is currently widely used in various sectors and spaces. IoT devices are becoming small yet powerful servers and perform server-like functions. Reliability is a critical aspect in both IoT devices and servers, as they work together to create a robust and dependable IoT ecosystem. Power and performance are two other major considerations of an IoT system. Modeling, analysis, evaluation, and optimization of reliability, power, and performance for IoT devices and servers are major components in IoT systems development and deployment. In this paper, we conduct an integrated study of reliability, power, and performance for IoT devices and servers by mathematically rigorous modeling and analysis. The contributions of the paper can be summarized as follows. We establish a continuous-time Markov chain (CTMC) model that incorporates server failure rate, server repair rate, task arrival rate, and task processing rate. Using such an analytical model, we can calculate the server availability, the average task response time, and the average power consumption. We point out that there is an optimal server speed that minimizes the power-time product and a combined cost-performance metric of power, performance, and reliability. We show the impact of server reliability on response time, power consumption, server utilization, and the power-performance tradeoff. To the best of the author’s knowledge, this is the first paper that takes a combined approach to modeling and analysis of reliability, power, and performance for IoT devices and servers. It has been noticed that there has been little such theoretically solid investigation in the existing literature. Therefore, this paper has made tangible contributions and significant advances in the joint understanding of reliability, power, performance, and their interplay in IoT devices and servers quantitatively and mathematically.</p></div>","PeriodicalId":50027,"journal":{"name":"Journal of Systems Architecture","volume":"154 ","pages":"Article 103216"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated analysis of reliability, power, and performance for IoT devices and servers\",\"authors\":\"Keqin Li\",\"doi\":\"10.1016/j.sysarc.2024.103216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Internet of Things (IoT) is currently widely used in various sectors and spaces. IoT devices are becoming small yet powerful servers and perform server-like functions. Reliability is a critical aspect in both IoT devices and servers, as they work together to create a robust and dependable IoT ecosystem. Power and performance are two other major considerations of an IoT system. Modeling, analysis, evaluation, and optimization of reliability, power, and performance for IoT devices and servers are major components in IoT systems development and deployment. In this paper, we conduct an integrated study of reliability, power, and performance for IoT devices and servers by mathematically rigorous modeling and analysis. The contributions of the paper can be summarized as follows. We establish a continuous-time Markov chain (CTMC) model that incorporates server failure rate, server repair rate, task arrival rate, and task processing rate. Using such an analytical model, we can calculate the server availability, the average task response time, and the average power consumption. We point out that there is an optimal server speed that minimizes the power-time product and a combined cost-performance metric of power, performance, and reliability. We show the impact of server reliability on response time, power consumption, server utilization, and the power-performance tradeoff. To the best of the author’s knowledge, this is the first paper that takes a combined approach to modeling and analysis of reliability, power, and performance for IoT devices and servers. It has been noticed that there has been little such theoretically solid investigation in the existing literature. Therefore, this paper has made tangible contributions and significant advances in the joint understanding of reliability, power, performance, and their interplay in IoT devices and servers quantitatively and mathematically.</p></div>\",\"PeriodicalId\":50027,\"journal\":{\"name\":\"Journal of Systems Architecture\",\"volume\":\"154 \",\"pages\":\"Article 103216\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Architecture\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138376212400153X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Architecture","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138376212400153X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Integrated analysis of reliability, power, and performance for IoT devices and servers
The Internet of Things (IoT) is currently widely used in various sectors and spaces. IoT devices are becoming small yet powerful servers and perform server-like functions. Reliability is a critical aspect in both IoT devices and servers, as they work together to create a robust and dependable IoT ecosystem. Power and performance are two other major considerations of an IoT system. Modeling, analysis, evaluation, and optimization of reliability, power, and performance for IoT devices and servers are major components in IoT systems development and deployment. In this paper, we conduct an integrated study of reliability, power, and performance for IoT devices and servers by mathematically rigorous modeling and analysis. The contributions of the paper can be summarized as follows. We establish a continuous-time Markov chain (CTMC) model that incorporates server failure rate, server repair rate, task arrival rate, and task processing rate. Using such an analytical model, we can calculate the server availability, the average task response time, and the average power consumption. We point out that there is an optimal server speed that minimizes the power-time product and a combined cost-performance metric of power, performance, and reliability. We show the impact of server reliability on response time, power consumption, server utilization, and the power-performance tradeoff. To the best of the author’s knowledge, this is the first paper that takes a combined approach to modeling and analysis of reliability, power, and performance for IoT devices and servers. It has been noticed that there has been little such theoretically solid investigation in the existing literature. Therefore, this paper has made tangible contributions and significant advances in the joint understanding of reliability, power, performance, and their interplay in IoT devices and servers quantitatively and mathematically.
期刊介绍:
The Journal of Systems Architecture: Embedded Software Design (JSA) is a journal covering all design and architectural aspects related to embedded systems and software. It ranges from the microarchitecture level via the system software level up to the application-specific architecture level. Aspects such as real-time systems, operating systems, FPGA programming, programming languages, communications (limited to analysis and the software stack), mobile systems, parallel and distributed architectures as well as additional subjects in the computer and system architecture area will fall within the scope of this journal. Technology will not be a main focus, but its use and relevance to particular designs will be. Case studies are welcome but must contribute more than just a design for a particular piece of software.
Design automation of such systems including methodologies, techniques and tools for their design as well as novel designs of software components fall within the scope of this journal. Novel applications that use embedded systems are also central in this journal. While hardware is not a part of this journal hardware/software co-design methods that consider interplay between software and hardware components with and emphasis on software are also relevant here.