Hung-Lin Chen , Chung-Shin Lu , Fu-Yu Liu , Yu-Yun Lin , Chiing-Chang Chen , Dechun Zou
{"title":"以 K2Fe2O4/rGO 异质结为光催化剂将 CO2 光还原为碳氢化合物的效率","authors":"Hung-Lin Chen , Chung-Shin Lu , Fu-Yu Liu , Yu-Yun Lin , Chiing-Chang Chen , Dechun Zou","doi":"10.1016/j.jcou.2024.102858","DOIUrl":null,"url":null,"abstract":"<div><p>Conversion of CO<sub>2</sub> into single-carbon (C1) or multi-carbon (C2+) compounds with high value-added chemicals is highly desirable but challenging. Under moderate, environmentally amiable conditions, photocatalysis may afford the deactivation and controllable C–C coupling of CO<sub>2</sub>. Here, we prepared K<sub>2</sub>Fe<sub>2</sub>O<sub>4</sub>/rGO, a photocatalyst containing magnetic ferrite, for CO<sub>2</sub> photocatalytic reduction. The optimized K<sub>2</sub>Fe<sub>2</sub>O<sub>4</sub>/5 %rGO demonstrated the most efficient CO<sub>2</sub>-to-methane conversion performance of 23.35 µmol g<sup>−1</sup> h<sup>−1</sup>, which is 3.24 and 2.49 times the conversion rate constant of K<sub>2</sub>Fe<sub>2</sub>O<sub>4</sub> and rGO as photocatalytic catalysts, respectively. Therefore, the photocatalytic conversion of CO<sub>2</sub> to hydrocarbons [e.g., C<sub>n</sub>H<sub>2n+2</sub>, C<sub>n</sub>H<sub>2n</sub>, and C<sub>n</sub>H<sub>2n-2</sub> (n = 1–5)] with K<sub>2</sub>Fe<sub>2</sub>O<sub>4</sub>/rGO is an excellent method, with 100 % selectivity, for the production of multi-carbon hydrocarbons: 43 % CH<sub>4</sub> and 57 % C2+. The time-varying concentrations of hydrocarbon profiles for the photocatalytic reduction of CO<sub>2</sub> afford strong evidence for understanding the mechanisms underlying photoreduction. In an alkaline solution, K<sub>2</sub>Fe<sub>2</sub>O<sub>4</sub>/rGO can mediate CO<sub>2</sub> photocatalytic reduction with simultaneous deoxygenation and C–C coupling.</p></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"85 ","pages":"Article 102858"},"PeriodicalIF":7.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212982024001938/pdfft?md5=f094328476054485ee7152cd3e97966a&pid=1-s2.0-S2212982024001938-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Efficiency of CO2 photoreduction to hydrocarbons with K2Fe2O4/rGO heterojunction as a photocatalyst\",\"authors\":\"Hung-Lin Chen , Chung-Shin Lu , Fu-Yu Liu , Yu-Yun Lin , Chiing-Chang Chen , Dechun Zou\",\"doi\":\"10.1016/j.jcou.2024.102858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Conversion of CO<sub>2</sub> into single-carbon (C1) or multi-carbon (C2+) compounds with high value-added chemicals is highly desirable but challenging. Under moderate, environmentally amiable conditions, photocatalysis may afford the deactivation and controllable C–C coupling of CO<sub>2</sub>. Here, we prepared K<sub>2</sub>Fe<sub>2</sub>O<sub>4</sub>/rGO, a photocatalyst containing magnetic ferrite, for CO<sub>2</sub> photocatalytic reduction. The optimized K<sub>2</sub>Fe<sub>2</sub>O<sub>4</sub>/5 %rGO demonstrated the most efficient CO<sub>2</sub>-to-methane conversion performance of 23.35 µmol g<sup>−1</sup> h<sup>−1</sup>, which is 3.24 and 2.49 times the conversion rate constant of K<sub>2</sub>Fe<sub>2</sub>O<sub>4</sub> and rGO as photocatalytic catalysts, respectively. Therefore, the photocatalytic conversion of CO<sub>2</sub> to hydrocarbons [e.g., C<sub>n</sub>H<sub>2n+2</sub>, C<sub>n</sub>H<sub>2n</sub>, and C<sub>n</sub>H<sub>2n-2</sub> (n = 1–5)] with K<sub>2</sub>Fe<sub>2</sub>O<sub>4</sub>/rGO is an excellent method, with 100 % selectivity, for the production of multi-carbon hydrocarbons: 43 % CH<sub>4</sub> and 57 % C2+. The time-varying concentrations of hydrocarbon profiles for the photocatalytic reduction of CO<sub>2</sub> afford strong evidence for understanding the mechanisms underlying photoreduction. In an alkaline solution, K<sub>2</sub>Fe<sub>2</sub>O<sub>4</sub>/rGO can mediate CO<sub>2</sub> photocatalytic reduction with simultaneous deoxygenation and C–C coupling.</p></div>\",\"PeriodicalId\":350,\"journal\":{\"name\":\"Journal of CO2 Utilization\",\"volume\":\"85 \",\"pages\":\"Article 102858\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212982024001938/pdfft?md5=f094328476054485ee7152cd3e97966a&pid=1-s2.0-S2212982024001938-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of CO2 Utilization\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212982024001938\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982024001938","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Efficiency of CO2 photoreduction to hydrocarbons with K2Fe2O4/rGO heterojunction as a photocatalyst
Conversion of CO2 into single-carbon (C1) or multi-carbon (C2+) compounds with high value-added chemicals is highly desirable but challenging. Under moderate, environmentally amiable conditions, photocatalysis may afford the deactivation and controllable C–C coupling of CO2. Here, we prepared K2Fe2O4/rGO, a photocatalyst containing magnetic ferrite, for CO2 photocatalytic reduction. The optimized K2Fe2O4/5 %rGO demonstrated the most efficient CO2-to-methane conversion performance of 23.35 µmol g−1 h−1, which is 3.24 and 2.49 times the conversion rate constant of K2Fe2O4 and rGO as photocatalytic catalysts, respectively. Therefore, the photocatalytic conversion of CO2 to hydrocarbons [e.g., CnH2n+2, CnH2n, and CnH2n-2 (n = 1–5)] with K2Fe2O4/rGO is an excellent method, with 100 % selectivity, for the production of multi-carbon hydrocarbons: 43 % CH4 and 57 % C2+. The time-varying concentrations of hydrocarbon profiles for the photocatalytic reduction of CO2 afford strong evidence for understanding the mechanisms underlying photoreduction. In an alkaline solution, K2Fe2O4/rGO can mediate CO2 photocatalytic reduction with simultaneous deoxygenation and C–C coupling.
期刊介绍:
The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials.
The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications.
The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.