Guopu Chen , Xiyu Wang , Jiaye Li , Ye Xu , Yue Lin , Fengyuan Wang
{"title":"治疗恶性黑色素瘤的智能水凝胶","authors":"Guopu Chen , Xiyu Wang , Jiaye Li , Ye Xu , Yue Lin , Fengyuan Wang","doi":"10.1016/j.engreg.2024.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>Malignant melanoma (MM) is an extremely aggressive and fatal form of skin cancer that primarily affects the bottom layer of the epidermis and is associated with poor clinical outcomes. Early-stage MM is typically treated through surgical removal, while chemotherapy and radiotherapy are common conventional treatment options that come with harmful side effects. Emerging therapies such as immunotherapy, photodynamic therapy, biologic therapy, and photothermal therapy present hopeful options for treatment due to their effective and secure drug delivery methods. To address the limitations of current treatment options, advanced methods of drug delivery for subcutaneous MM are being developed, with hydrogels emerging as a promising alternative. To date, significant advancements have been made in the treatment of MM through the use of hydrogels-based drug delivery systems through focal plastering, injection, implantation, and microneedles. Recent research on hydrogel-based drug delivery systems that integrate multiple therapies for the treatment of subcutaneous MM is discussed in this review.</p></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"5 3","pages":"Pages 295-305"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666138124000343/pdfft?md5=be9fd21c46e2f1979b1f682e961bce43&pid=1-s2.0-S2666138124000343-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Intelligent hydrogels for treating malignant melanoma\",\"authors\":\"Guopu Chen , Xiyu Wang , Jiaye Li , Ye Xu , Yue Lin , Fengyuan Wang\",\"doi\":\"10.1016/j.engreg.2024.05.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Malignant melanoma (MM) is an extremely aggressive and fatal form of skin cancer that primarily affects the bottom layer of the epidermis and is associated with poor clinical outcomes. Early-stage MM is typically treated through surgical removal, while chemotherapy and radiotherapy are common conventional treatment options that come with harmful side effects. Emerging therapies such as immunotherapy, photodynamic therapy, biologic therapy, and photothermal therapy present hopeful options for treatment due to their effective and secure drug delivery methods. To address the limitations of current treatment options, advanced methods of drug delivery for subcutaneous MM are being developed, with hydrogels emerging as a promising alternative. To date, significant advancements have been made in the treatment of MM through the use of hydrogels-based drug delivery systems through focal plastering, injection, implantation, and microneedles. Recent research on hydrogel-based drug delivery systems that integrate multiple therapies for the treatment of subcutaneous MM is discussed in this review.</p></div>\",\"PeriodicalId\":72919,\"journal\":{\"name\":\"Engineered regeneration\",\"volume\":\"5 3\",\"pages\":\"Pages 295-305\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666138124000343/pdfft?md5=be9fd21c46e2f1979b1f682e961bce43&pid=1-s2.0-S2666138124000343-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineered regeneration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666138124000343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineered regeneration","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666138124000343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
摘要
恶性黑色素瘤(MM)是一种侵袭性极强的致命皮肤癌,主要侵犯表皮底层,临床疗效不佳。早期恶性黑色素瘤通常通过手术切除治疗,而化疗和放疗是常见的传统治疗方法,但会产生有害的副作用。免疫疗法、光动力疗法、生物疗法和光热疗法等新兴疗法因其有效、安全的给药方式,为治疗带来了希望。针对现有治疗方案的局限性,目前正在开发用于皮下 MM 的先进给药方法,其中水凝胶是一种很有前景的替代方法。迄今为止,通过病灶贴敷、注射、植入和微针等方法使用水凝胶给药系统治疗 MM 已取得重大进展。本综述将讨论水凝胶给药系统结合多种疗法治疗皮下 MM 的最新研究进展。
Intelligent hydrogels for treating malignant melanoma
Malignant melanoma (MM) is an extremely aggressive and fatal form of skin cancer that primarily affects the bottom layer of the epidermis and is associated with poor clinical outcomes. Early-stage MM is typically treated through surgical removal, while chemotherapy and radiotherapy are common conventional treatment options that come with harmful side effects. Emerging therapies such as immunotherapy, photodynamic therapy, biologic therapy, and photothermal therapy present hopeful options for treatment due to their effective and secure drug delivery methods. To address the limitations of current treatment options, advanced methods of drug delivery for subcutaneous MM are being developed, with hydrogels emerging as a promising alternative. To date, significant advancements have been made in the treatment of MM through the use of hydrogels-based drug delivery systems through focal plastering, injection, implantation, and microneedles. Recent research on hydrogel-based drug delivery systems that integrate multiple therapies for the treatment of subcutaneous MM is discussed in this review.