认知教育模型:为智能辅导系统建立智力技能模型的方法论

IF 2.1 3区 心理学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Cognitive Systems Research Pub Date : 2024-06-26 DOI:10.1016/j.cogsys.2024.101261
Oleg Sychev
{"title":"认知教育模型:为智能辅导系统建立智力技能模型的方法论","authors":"Oleg Sychev","doi":"10.1016/j.cogsys.2024.101261","DOIUrl":null,"url":null,"abstract":"<div><p>Automation of teaching people new skills requires modeling of human reasoning because human cognition involves active reasoning over the new subject domain to acquire skills that will later become automatic. The article presents Thought Process Trees — a language for modeling human reasoning that was created to facilitate the development of intelligent tutoring systems, which can perform the same reasoning that is expected of a student and find deficiencies in their line of thinking, providing explanatory messages and allowing them to learn from performance errors. The methodology of building trees which better reflect human learning is discussed, with examples of design choices during the modeling process and their consequences. The characteristics of educational modeling that impact building subject-domain models for intelligent tutoring systems are discussed. The trees were formalized and served as a basis for developing a framework for constructing intelligent tutoring systems. This significantly lowered the time required to build and debug a constraint-based subject-domain model. The framework has already been used to develop five intelligent tutoring systems and their prototypes and is being used to develop more of them.</p></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Educational models for cognition: Methodology of modeling intellectual skills for intelligent tutoring systems\",\"authors\":\"Oleg Sychev\",\"doi\":\"10.1016/j.cogsys.2024.101261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Automation of teaching people new skills requires modeling of human reasoning because human cognition involves active reasoning over the new subject domain to acquire skills that will later become automatic. The article presents Thought Process Trees — a language for modeling human reasoning that was created to facilitate the development of intelligent tutoring systems, which can perform the same reasoning that is expected of a student and find deficiencies in their line of thinking, providing explanatory messages and allowing them to learn from performance errors. The methodology of building trees which better reflect human learning is discussed, with examples of design choices during the modeling process and their consequences. The characteristics of educational modeling that impact building subject-domain models for intelligent tutoring systems are discussed. The trees were formalized and served as a basis for developing a framework for constructing intelligent tutoring systems. This significantly lowered the time required to build and debug a constraint-based subject-domain model. The framework has already been used to develop five intelligent tutoring systems and their prototypes and is being used to develop more of them.</p></div>\",\"PeriodicalId\":55242,\"journal\":{\"name\":\"Cognitive Systems Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Systems Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138904172400055X\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138904172400055X","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

要实现新技能教学的自动化,需要对人类推理进行建模,因为人类的认知涉及对新的学科领域进行主动推理,以获得日后将自动掌握的技能。文章介绍了 "思维过程树"--一种模拟人类推理的语言,它的创建是为了促进智能辅导系统的开发,该系统可以执行与学生预期相同的推理,并发现他们思路中的不足,提供解释性信息,让他们从错误的表现中吸取教训。本文讨论了构建能更好地反映人类学习的树的方法,并举例说明了建模过程中的设计选择及其后果。还讨论了教育建模的特点对建立智能辅导系统学科领域模型的影响。这些树被正规化,并作为开发构建智能辅导系统框架的基础。这大大缩短了构建和调试基于约束的学科领域模型所需的时间。该框架已被用于开发五个智能辅导系统及其原型,目前正被用于开发更多的智能辅导系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Educational models for cognition: Methodology of modeling intellectual skills for intelligent tutoring systems

Automation of teaching people new skills requires modeling of human reasoning because human cognition involves active reasoning over the new subject domain to acquire skills that will later become automatic. The article presents Thought Process Trees — a language for modeling human reasoning that was created to facilitate the development of intelligent tutoring systems, which can perform the same reasoning that is expected of a student and find deficiencies in their line of thinking, providing explanatory messages and allowing them to learn from performance errors. The methodology of building trees which better reflect human learning is discussed, with examples of design choices during the modeling process and their consequences. The characteristics of educational modeling that impact building subject-domain models for intelligent tutoring systems are discussed. The trees were formalized and served as a basis for developing a framework for constructing intelligent tutoring systems. This significantly lowered the time required to build and debug a constraint-based subject-domain model. The framework has already been used to develop five intelligent tutoring systems and their prototypes and is being used to develop more of them.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Systems Research
Cognitive Systems Research 工程技术-计算机:人工智能
CiteScore
9.40
自引率
5.10%
发文量
40
审稿时长
>12 weeks
期刊介绍: Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial. The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition. Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.
期刊最新文献
A mathematical formulation of learner cognition for personalised learning experiences Identification of the emotional component of inner pronunciation: EEG-ERP study Towards emotion-aware intelligent agents by utilizing knowledge graphs of experiences Exploring the impact of virtual reality flight simulations on EEG neural patterns and task performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1