用于高性能不对称超级电容器的纳米结构 Mn(OH)2/Mn3O4 电极装饰碳布的可控制备方法

IF 3.8 3区 工程技术 Q3 ENERGY & FUELS Chemical Engineering and Processing - Process Intensification Pub Date : 2024-07-02 DOI:10.1016/j.cep.2024.109871
Adam Moyseowicz, Karolina Kordek-Khalil, Agata Moyseowicz
{"title":"用于高性能不对称超级电容器的纳米结构 Mn(OH)2/Mn3O4 电极装饰碳布的可控制备方法","authors":"Adam Moyseowicz,&nbsp;Karolina Kordek-Khalil,&nbsp;Agata Moyseowicz","doi":"10.1016/j.cep.2024.109871","DOIUrl":null,"url":null,"abstract":"<div><p>Environmentally friendly aqueous asymmetric supercapacitors are expected to exhibit excellent energy storage properties, stable performance, and facile production protocols. This study focused on the fabrication and characterisation of an asymmetric supercapacitor (ASC) with a commercial activated carbon (AC) negative electrode and Mn(OH)<sub>2</sub>/Mn<sub>3</sub>O<sub>4</sub> composite on carbon cloth (hCC) positive electrode. The Mn-based electrode was synthesised using a one-step electrodeposition process. The morphology and crystalline structure of the composite electrode were modified by varying the deposition time of the Mn(OH)<sub>2</sub>/Mn<sub>3</sub>O<sub>4</sub> nanostructures on carbon cloth substrate which greatly influence the electrochemical performance of the asymmetric systems. The best ASC used the AC electrode and a Mn(OH)<sub>2</sub>/Mn<sub>3</sub>O<sub>4</sub>@hCC electrode prepared using electrodeposition over an optimised time of 3 h. It exhibited a remarkable specific energy density of 40.7 Wh kg<sup>−1</sup> at a power density of 100 W kg<sup>−1</sup>. In addition, this ASC demonstrated stable long-term performance, retaining 88 % of its capacitance after 5000 charge–discharge cycles, showing its great application potential in the field of supercapacitors.</p></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0255270124002095/pdfft?md5=1efe4aef7e89c6fc5b7e60ed73f828db&pid=1-s2.0-S0255270124002095-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Controlled preparation of carbon cloth decorated with nanostructured Mn(OH)2/Mn3O4 electrodes for high-performance asymmetric supercapacitors\",\"authors\":\"Adam Moyseowicz,&nbsp;Karolina Kordek-Khalil,&nbsp;Agata Moyseowicz\",\"doi\":\"10.1016/j.cep.2024.109871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Environmentally friendly aqueous asymmetric supercapacitors are expected to exhibit excellent energy storage properties, stable performance, and facile production protocols. This study focused on the fabrication and characterisation of an asymmetric supercapacitor (ASC) with a commercial activated carbon (AC) negative electrode and Mn(OH)<sub>2</sub>/Mn<sub>3</sub>O<sub>4</sub> composite on carbon cloth (hCC) positive electrode. The Mn-based electrode was synthesised using a one-step electrodeposition process. The morphology and crystalline structure of the composite electrode were modified by varying the deposition time of the Mn(OH)<sub>2</sub>/Mn<sub>3</sub>O<sub>4</sub> nanostructures on carbon cloth substrate which greatly influence the electrochemical performance of the asymmetric systems. The best ASC used the AC electrode and a Mn(OH)<sub>2</sub>/Mn<sub>3</sub>O<sub>4</sub>@hCC electrode prepared using electrodeposition over an optimised time of 3 h. It exhibited a remarkable specific energy density of 40.7 Wh kg<sup>−1</sup> at a power density of 100 W kg<sup>−1</sup>. In addition, this ASC demonstrated stable long-term performance, retaining 88 % of its capacitance after 5000 charge–discharge cycles, showing its great application potential in the field of supercapacitors.</p></div>\",\"PeriodicalId\":9929,\"journal\":{\"name\":\"Chemical Engineering and Processing - Process Intensification\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0255270124002095/pdfft?md5=1efe4aef7e89c6fc5b7e60ed73f828db&pid=1-s2.0-S0255270124002095-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering and Processing - Process Intensification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0255270124002095\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270124002095","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

环境友好型水性非对称超级电容器有望表现出卓越的储能特性、稳定的性能和简便的生产方案。本研究侧重于非对称超级电容器(ASC)的制造和表征,其负极为商用活性炭(AC),正极为碳布上的锰(OH)2/Mn3O4 复合材料(hCC)。锰基电极采用一步电沉积工艺合成。通过改变 Mn(OH)2/Mn3O4 纳米结构在碳布基底上的沉积时间,改变了复合电极的形貌和晶体结构,这在很大程度上影响了不对称体系的电化学性能。最佳 ASC 使用交流电极和 Mn(OH)2/Mn3O4@hCC 电极,采用电沉积法制备,优化时间为 3 小时。此外,这种 ASC 还表现出稳定的长期性能,在 5000 次充放电循环后仍能保持 88% 的电容,显示出其在超级电容器领域的巨大应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Controlled preparation of carbon cloth decorated with nanostructured Mn(OH)2/Mn3O4 electrodes for high-performance asymmetric supercapacitors

Environmentally friendly aqueous asymmetric supercapacitors are expected to exhibit excellent energy storage properties, stable performance, and facile production protocols. This study focused on the fabrication and characterisation of an asymmetric supercapacitor (ASC) with a commercial activated carbon (AC) negative electrode and Mn(OH)2/Mn3O4 composite on carbon cloth (hCC) positive electrode. The Mn-based electrode was synthesised using a one-step electrodeposition process. The morphology and crystalline structure of the composite electrode were modified by varying the deposition time of the Mn(OH)2/Mn3O4 nanostructures on carbon cloth substrate which greatly influence the electrochemical performance of the asymmetric systems. The best ASC used the AC electrode and a Mn(OH)2/Mn3O4@hCC electrode prepared using electrodeposition over an optimised time of 3 h. It exhibited a remarkable specific energy density of 40.7 Wh kg−1 at a power density of 100 W kg−1. In addition, this ASC demonstrated stable long-term performance, retaining 88 % of its capacitance after 5000 charge–discharge cycles, showing its great application potential in the field of supercapacitors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
9.30%
发文量
408
审稿时长
49 days
期刊介绍: Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.
期刊最新文献
Editorial Board Performance enhancement on the three-port gas pressure dividing device by flow channel optimization of wave rotor Flow characteristics and mass transfer performance of phosphoric acid extraction in a T-type central plug-in microreactor Intensified processes for CO2 capture and valorization by catalytic conversion Integration of photocatalytic persulfate system with nanofiltration for the treatment of textile dye at pilot scale: Statistical optimization through chemometric and ridge analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1