通过电化学转换和助催化剂渗入激活直接电解二氧化碳的 Ga0.8Ti0.4Nb0.8O4 阴极

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2024-07-05 DOI:10.1016/j.jpowsour.2024.235022
Xiaojing Liu , Jiupai Ni , Chengsheng Ni
{"title":"通过电化学转换和助催化剂渗入激活直接电解二氧化碳的 Ga0.8Ti0.4Nb0.8O4 阴极","authors":"Xiaojing Liu ,&nbsp;Jiupai Ni ,&nbsp;Chengsheng Ni","doi":"10.1016/j.jpowsour.2024.235022","DOIUrl":null,"url":null,"abstract":"<div><p>Solid oxide electrolysis cell (SOEC) can efficiently convert CO<sub>2</sub> into CO using renewable energy sources. SOECs that operate at around 800 °C and negative bias for CO<sub>2</sub> reduction pose demanding requirements on the stability of the cathode. Here, a non-perovskite niobate, Ga<sub>0.8</sub>Ti<sub>0.4</sub>Nb<sub>0.8</sub>O<sub>4</sub> (GTN), is developed as a robust cathode that can be activated under a −1.4 V bias at 800 °C for CO<sub>2</sub> splitting. A gradual increase in the current density of the electrolysis cell with GTN cathode is accompanied by the partial reduction of Nb<sup>5+</sup> to Nb<sup>4+</sup> to produce NbO<sub>2</sub> and a pseudorutile phase. The coupling of NbO<sub>2</sub> nanoparticles and the defective pseudorutile surface layer serves as a good combination for the electrochemical reduction of CO<sub>2</sub> at elevated temperatures: the electrolysis performance is slightly enhanced by ionic infiltration of Ni because the <em>in situ</em> grown metallic NbO<sub>2</sub> can serve as the electron reservoir, similar to the metal Ni. The presence of CeO<sub>2</sub> can increase the activation of CO<sub>2</sub> and provide the ionic transport between the interface of the electrolyte and cathode. This work demonstrates a robust niobate that can be reduced by electrochemical switching to reduce the stubborn Nb<sup>5+</sup> to produce a composite functional layer for efficient CO<sub>2</sub> splitting.</p></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activating Ga0.8Ti0.4Nb0.8O4 cathode for direct electrolysis of CO2 via electrochemical switching and infiltration of co-catalyst\",\"authors\":\"Xiaojing Liu ,&nbsp;Jiupai Ni ,&nbsp;Chengsheng Ni\",\"doi\":\"10.1016/j.jpowsour.2024.235022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Solid oxide electrolysis cell (SOEC) can efficiently convert CO<sub>2</sub> into CO using renewable energy sources. SOECs that operate at around 800 °C and negative bias for CO<sub>2</sub> reduction pose demanding requirements on the stability of the cathode. Here, a non-perovskite niobate, Ga<sub>0.8</sub>Ti<sub>0.4</sub>Nb<sub>0.8</sub>O<sub>4</sub> (GTN), is developed as a robust cathode that can be activated under a −1.4 V bias at 800 °C for CO<sub>2</sub> splitting. A gradual increase in the current density of the electrolysis cell with GTN cathode is accompanied by the partial reduction of Nb<sup>5+</sup> to Nb<sup>4+</sup> to produce NbO<sub>2</sub> and a pseudorutile phase. The coupling of NbO<sub>2</sub> nanoparticles and the defective pseudorutile surface layer serves as a good combination for the electrochemical reduction of CO<sub>2</sub> at elevated temperatures: the electrolysis performance is slightly enhanced by ionic infiltration of Ni because the <em>in situ</em> grown metallic NbO<sub>2</sub> can serve as the electron reservoir, similar to the metal Ni. The presence of CeO<sub>2</sub> can increase the activation of CO<sub>2</sub> and provide the ionic transport between the interface of the electrolyte and cathode. This work demonstrates a robust niobate that can be reduced by electrochemical switching to reduce the stubborn Nb<sup>5+</sup> to produce a composite functional layer for efficient CO<sub>2</sub> splitting.</p></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775324009741\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324009741","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

固体氧化物电解池(SOEC)可利用可再生能源有效地将二氧化碳转化为一氧化碳。SOEC 的工作温度约为 800 °C,二氧化碳还原采用负偏压,这对阴极的稳定性提出了苛刻的要求。在此,我们开发了一种非超晶系铌酸盐--Ga0.8Ti0.4Nb0.8O4(GTN)--作为一种坚固的阴极,可在 800 ℃、-1.4 V 偏置下激活,进行二氧化碳分馏。使用 GTN 阴极的电解槽电流密度逐渐增大,同时 Nb5+ 部分还原为 Nb4+,生成 NbO2 和假中性相。NbO2 纳米粒子和有缺陷的假金刚石表层的耦合是在高温下电化学还原 CO2 的良好组合:由于原位生长的金属 NbO2 可以充当电子库,与金属 Ni 相似,因此离子渗入 Ni 会略微增强电解性能。CeO2 的存在可增加 CO2 的活化,并在电解质和阴极界面之间提供离子传输。这项工作展示了一种坚固的铌酸盐,它可以通过电化学转换来减少顽固的 Nb5+,从而产生一种复合功能层,实现高效的二氧化碳分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Activating Ga0.8Ti0.4Nb0.8O4 cathode for direct electrolysis of CO2 via electrochemical switching and infiltration of co-catalyst

Solid oxide electrolysis cell (SOEC) can efficiently convert CO2 into CO using renewable energy sources. SOECs that operate at around 800 °C and negative bias for CO2 reduction pose demanding requirements on the stability of the cathode. Here, a non-perovskite niobate, Ga0.8Ti0.4Nb0.8O4 (GTN), is developed as a robust cathode that can be activated under a −1.4 V bias at 800 °C for CO2 splitting. A gradual increase in the current density of the electrolysis cell with GTN cathode is accompanied by the partial reduction of Nb5+ to Nb4+ to produce NbO2 and a pseudorutile phase. The coupling of NbO2 nanoparticles and the defective pseudorutile surface layer serves as a good combination for the electrochemical reduction of CO2 at elevated temperatures: the electrolysis performance is slightly enhanced by ionic infiltration of Ni because the in situ grown metallic NbO2 can serve as the electron reservoir, similar to the metal Ni. The presence of CeO2 can increase the activation of CO2 and provide the ionic transport between the interface of the electrolyte and cathode. This work demonstrates a robust niobate that can be reduced by electrochemical switching to reduce the stubborn Nb5+ to produce a composite functional layer for efficient CO2 splitting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
A hybrid deep learning framework integrating bidirectional sliding windows, TCN, and external attention for accurate state-of-charge estimation in lithium-ion batteries A novel temporal-frequency dual attention mechanism network for state of charge estimation of lithium-ion battery Softness-rigidness controlled polyaniline nanofiber-structured hydrogels for flexible supercapacitors Fire hazards of carbonate-based electrolytes for sodium-ion batteries: What changes from lithium-ion batteries? Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1