天然纤维增强泡沫混凝土的性能和机理分析

IF 6.5 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Case Studies in Construction Materials Pub Date : 2024-06-27 DOI:10.1016/j.cscm.2024.e03476
Xinquan Wang , Yingli Jin , Quan Ma , Xiao Li
{"title":"天然纤维增强泡沫混凝土的性能和机理分析","authors":"Xinquan Wang ,&nbsp;Yingli Jin ,&nbsp;Quan Ma ,&nbsp;Xiao Li","doi":"10.1016/j.cscm.2024.e03476","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines the microstructure and mechanical properties of foamed concrete modified by natural fibers (basalt, coir, and sisal) in concentrations ranging from 0.15 % to 0.45 %. The objective was to develop high-performance natural fiber-reinforced foamed concrete (NFRFC). Comprehensive experimental analyses were performed, including assessments of micromorphology, phase composition, water absorption, compressive and flexural strength, as well as durability. The results indicate that coir fibers markedly enhance the compressive strength of NFRFC, outperforming sisal and basalt fibers. Optimal compressive strength, an increase of 42.19 % over the control, was achieved with a coir fiber content of 0.3 %. Conversely, excessive fiber addition was found to enlarge pore size and connectivity, adversely affecting the NFRFC’s microstructure. All fiber variations significantly improved the flexural properties, with basalt fibers providing the most effective reinforcement. Additionally, while freeze-thaw and wet-dry cycles generally diminished the performance of foam concrete, the inclusion of natural fibers like coir mitigated micro-cracking and enhanced durability. The study suggests incorporating suitable quantities of coir or sisal fibers into foamed concrete to achieve durable, high-performance NFRFC suitable for various engineering applications.</p></div>","PeriodicalId":9641,"journal":{"name":"Case Studies in Construction Materials","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214509524006272/pdfft?md5=52ec6f744c7eacbf3549e2f7735c20e2&pid=1-s2.0-S2214509524006272-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Performance and mechanism analysis of natural fiber-reinforced foamed concrete\",\"authors\":\"Xinquan Wang ,&nbsp;Yingli Jin ,&nbsp;Quan Ma ,&nbsp;Xiao Li\",\"doi\":\"10.1016/j.cscm.2024.e03476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study examines the microstructure and mechanical properties of foamed concrete modified by natural fibers (basalt, coir, and sisal) in concentrations ranging from 0.15 % to 0.45 %. The objective was to develop high-performance natural fiber-reinforced foamed concrete (NFRFC). Comprehensive experimental analyses were performed, including assessments of micromorphology, phase composition, water absorption, compressive and flexural strength, as well as durability. The results indicate that coir fibers markedly enhance the compressive strength of NFRFC, outperforming sisal and basalt fibers. Optimal compressive strength, an increase of 42.19 % over the control, was achieved with a coir fiber content of 0.3 %. Conversely, excessive fiber addition was found to enlarge pore size and connectivity, adversely affecting the NFRFC’s microstructure. All fiber variations significantly improved the flexural properties, with basalt fibers providing the most effective reinforcement. Additionally, while freeze-thaw and wet-dry cycles generally diminished the performance of foam concrete, the inclusion of natural fibers like coir mitigated micro-cracking and enhanced durability. The study suggests incorporating suitable quantities of coir or sisal fibers into foamed concrete to achieve durable, high-performance NFRFC suitable for various engineering applications.</p></div>\",\"PeriodicalId\":9641,\"journal\":{\"name\":\"Case Studies in Construction Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214509524006272/pdfft?md5=52ec6f744c7eacbf3549e2f7735c20e2&pid=1-s2.0-S2214509524006272-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Construction Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214509524006272\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Construction Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214509524006272","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了天然纤维(玄武岩、棕毛和剑麻)改性发泡混凝土的微观结构和力学性能,天然纤维的浓度从 0.15 % 到 0.45 % 不等。研究的目的是开发高性能天然纤维增强发泡混凝土(NFRFC)。研究人员进行了全面的实验分析,包括对微观形态、相组成、吸水性、抗压和抗折强度以及耐久性的评估。结果表明,棕纤维明显提高了 NFRFC 的抗压强度,优于剑麻纤维和玄武岩纤维。椰壳纤维含量为 0.3%时,抗压强度达到最佳,比对照组提高了 42.19%。相反,过量添加纤维会扩大孔隙和连通性,对 NFRFC 的微观结构产生不利影响。所有不同的纤维都能明显改善抗弯性能,其中玄武岩纤维的加固效果最好。此外,虽然冻融循环和干湿循环通常会降低泡沫混凝土的性能,但加入椰壳纤维等天然纤维可减轻微裂缝并提高耐久性。该研究建议在泡沫混凝土中加入适量的椰壳纤维或剑麻纤维,以获得适合各种工程应用的耐用、高性能 NFRFC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance and mechanism analysis of natural fiber-reinforced foamed concrete

This study examines the microstructure and mechanical properties of foamed concrete modified by natural fibers (basalt, coir, and sisal) in concentrations ranging from 0.15 % to 0.45 %. The objective was to develop high-performance natural fiber-reinforced foamed concrete (NFRFC). Comprehensive experimental analyses were performed, including assessments of micromorphology, phase composition, water absorption, compressive and flexural strength, as well as durability. The results indicate that coir fibers markedly enhance the compressive strength of NFRFC, outperforming sisal and basalt fibers. Optimal compressive strength, an increase of 42.19 % over the control, was achieved with a coir fiber content of 0.3 %. Conversely, excessive fiber addition was found to enlarge pore size and connectivity, adversely affecting the NFRFC’s microstructure. All fiber variations significantly improved the flexural properties, with basalt fibers providing the most effective reinforcement. Additionally, while freeze-thaw and wet-dry cycles generally diminished the performance of foam concrete, the inclusion of natural fibers like coir mitigated micro-cracking and enhanced durability. The study suggests incorporating suitable quantities of coir or sisal fibers into foamed concrete to achieve durable, high-performance NFRFC suitable for various engineering applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
19.40%
发文量
842
审稿时长
63 days
期刊介绍: Case Studies in Construction Materials provides a forum for the rapid publication of short, structured Case Studies on construction materials. In addition, the journal also publishes related Short Communications, Full length research article and Comprehensive review papers (by invitation). The journal will provide an essential compendium of case studies for practicing engineers, designers, researchers and other practitioners who are interested in all aspects construction materials. The journal will publish new and novel case studies, but will also provide a forum for the publication of high quality descriptions of classic construction material problems and solutions.
期刊最新文献
Effect of modifiers on the properties of bamboo scraps/magnesium oxychloride composites under dry-wet cycling environments Life cycle assessment of carbon emissions for cross-sea tunnel: A case study of Shenzhen-Zhongshan Bridge and Tunnel in China Effect of nano-silica on the flexural behavior and mechanical properties of self-compacted high-performance concrete (SCHPC) produced by cement CEM II/A-P (experimental and numerical study) Properties of saline soil stabilized with fly ash and modified aeolian sand Effect of MgO-based expansive agent on strengths, volume stability, and microstructures of C80 SCC in steel tube arch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1