{"title":"基于纳米结构 V2O5/MoO3 的脑启发光学记忆应用器件","authors":"Sharmila B;Priyanka Dwivedi","doi":"10.1109/TNANO.2024.3409151","DOIUrl":null,"url":null,"abstract":"Brain inspired devices are the building block of the neuromorphic based artificial intelligence systems. This paper presents a novel optical memory devices based on the nanostructured V\n<sub>2</sub>\nO\n<sub>5</sub>\n/MoO\n<sub>3</sub>\n. These optical memory devices were fabricated using wafer scalable technology. The fabricated optical memory devices can mimic the synaptic behaviors such as paired pulse facilitation (PPF) index, excitatory postsynaptic current (EPSC), short term plasticity, inhibitory postsynaptic current (IPSC), spike dependent plasticity, long term plasticity and long term retention capability. The proposed device has shown a PPF index of 216% and long term retention time of 5.6 × 10\n<sup>3</sup>\n seconds. The demonstrated optical memory devices have highly sensitive, repeatable and have a potential to be used for neuromorphic computing applications.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"535-540"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanostructured V2O5/MoO3 Based Devices for Brain Inspired Optical Memory Applications\",\"authors\":\"Sharmila B;Priyanka Dwivedi\",\"doi\":\"10.1109/TNANO.2024.3409151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain inspired devices are the building block of the neuromorphic based artificial intelligence systems. This paper presents a novel optical memory devices based on the nanostructured V\\n<sub>2</sub>\\nO\\n<sub>5</sub>\\n/MoO\\n<sub>3</sub>\\n. These optical memory devices were fabricated using wafer scalable technology. The fabricated optical memory devices can mimic the synaptic behaviors such as paired pulse facilitation (PPF) index, excitatory postsynaptic current (EPSC), short term plasticity, inhibitory postsynaptic current (IPSC), spike dependent plasticity, long term plasticity and long term retention capability. The proposed device has shown a PPF index of 216% and long term retention time of 5.6 × 10\\n<sup>3</sup>\\n seconds. The demonstrated optical memory devices have highly sensitive, repeatable and have a potential to be used for neuromorphic computing applications.\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":\"23 \",\"pages\":\"535-540\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10547461/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10547461/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Nanostructured V2O5/MoO3 Based Devices for Brain Inspired Optical Memory Applications
Brain inspired devices are the building block of the neuromorphic based artificial intelligence systems. This paper presents a novel optical memory devices based on the nanostructured V
2
O
5
/MoO
3
. These optical memory devices were fabricated using wafer scalable technology. The fabricated optical memory devices can mimic the synaptic behaviors such as paired pulse facilitation (PPF) index, excitatory postsynaptic current (EPSC), short term plasticity, inhibitory postsynaptic current (IPSC), spike dependent plasticity, long term plasticity and long term retention capability. The proposed device has shown a PPF index of 216% and long term retention time of 5.6 × 10
3
seconds. The demonstrated optical memory devices have highly sensitive, repeatable and have a potential to be used for neuromorphic computing applications.
期刊介绍:
The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.