{"title":"设计和测试用于玉米精量播种的新型汇流槽导向播种管","authors":"Xian Jia , Jingyu Zhu , Gang Guo , Yuxiang Huang , Xiaojun Gao , Chongqin Zhang","doi":"10.1016/j.biosystemseng.2024.06.012","DOIUrl":null,"url":null,"abstract":"<div><p>In precision seeding operations, the irregular shapes of maize seed particles and the suboptimal geometric structure of the seed tube contribute to the rolling and bouncing of seeds upon falling into the furrow, ultimately compromising seeding uniformity. To address this issue, a convergent groove-guided (CGG) seed tube was proposed based on the principle of brachistochrone curve considering friction (BCCF). The discrete element method (DEM) was employed to conduct a comprehensive phenomenological analysis and numerical investigation of particle guide characteristics. Bench tests and field experiments were designed to verify the simulation results. Through response surface analysis, the optimal seeding performance was achieved at a groove angle of 111.34°, tube incline angle of 1.56°, and ground speed of 7.2 km h<sup>−1</sup>, resulting in a lateral dispersion landing range of 11.10 mm, angular velocity of 17.38 rad s<sup>−1</sup>, seed landing speed variation coefficient of 2.29%, and plant spacing variation coefficient of 6.04%. Bench test results unveiled that, under a ground speed of 7.2 km h<sup>−1</sup>, the variation coefficient of plant spacing for CGG seed tubes was measured at 7.63%, with a deviation of 1.59% from the simulation results. At high ground speeds of 9.0–14.4 km h<sup>−1</sup>, the seed guiding performance was also better than traditional seed tubes. Consistent results were also verified through field experiments. Therefore, the CGG seed tube manifested superior seed guidance efficacy when juxtaposed with its conventional counterpart, and this design can provide technical support for the realization of seed-to-ground positioning technology.</p></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and test of a novel converging groove-guided seed tube for precision seeding of maize\",\"authors\":\"Xian Jia , Jingyu Zhu , Gang Guo , Yuxiang Huang , Xiaojun Gao , Chongqin Zhang\",\"doi\":\"10.1016/j.biosystemseng.2024.06.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In precision seeding operations, the irregular shapes of maize seed particles and the suboptimal geometric structure of the seed tube contribute to the rolling and bouncing of seeds upon falling into the furrow, ultimately compromising seeding uniformity. To address this issue, a convergent groove-guided (CGG) seed tube was proposed based on the principle of brachistochrone curve considering friction (BCCF). The discrete element method (DEM) was employed to conduct a comprehensive phenomenological analysis and numerical investigation of particle guide characteristics. Bench tests and field experiments were designed to verify the simulation results. Through response surface analysis, the optimal seeding performance was achieved at a groove angle of 111.34°, tube incline angle of 1.56°, and ground speed of 7.2 km h<sup>−1</sup>, resulting in a lateral dispersion landing range of 11.10 mm, angular velocity of 17.38 rad s<sup>−1</sup>, seed landing speed variation coefficient of 2.29%, and plant spacing variation coefficient of 6.04%. Bench test results unveiled that, under a ground speed of 7.2 km h<sup>−1</sup>, the variation coefficient of plant spacing for CGG seed tubes was measured at 7.63%, with a deviation of 1.59% from the simulation results. At high ground speeds of 9.0–14.4 km h<sup>−1</sup>, the seed guiding performance was also better than traditional seed tubes. Consistent results were also verified through field experiments. Therefore, the CGG seed tube manifested superior seed guidance efficacy when juxtaposed with its conventional counterpart, and this design can provide technical support for the realization of seed-to-ground positioning technology.</p></div>\",\"PeriodicalId\":9173,\"journal\":{\"name\":\"Biosystems Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosystems Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1537511024001466\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511024001466","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
在精密播种作业中,玉米种子颗粒的不规则形状和播种管的次优几何结构会导致种子落入沟槽时发生滚动和弹跳,最终影响播种均匀性。为解决这一问题,研究人员根据考虑摩擦力的布氏曲线(BCCF)原理,提出了一种收敛沟槽导向(CGG)播种管。采用离散元素法(DEM)对颗粒导向特性进行了全面的现象学分析和数值研究。设计了台架试验和现场实验来验证模拟结果。通过响应面分析,在沟槽角度为 111.34°、导管倾斜角度为 1.56°、地面速度为 7.2 km h-1 的条件下实现了最佳播种性能,使横向分散着陆范围达到 11.10 mm,角速度达到 17.38 rad s-1,种子着陆速度变化系数为 2.29%,株距变化系数为 6.04%。台架试验结果表明,在地面速度为 7.2 km h-1 时,CGG 种子管的株距变化系数为 7.63%,与模拟结果偏差为 1.59%。在 9.0-14.4 公里/小时的高地面速度下,种子导向性能也优于传统的播种管。田间试验也验证了一致的结果。因此,CGG 输种管与传统输种管相比具有更优越的种子导向效果,该设计可为实现种子对地定位技术提供技术支持。
Design and test of a novel converging groove-guided seed tube for precision seeding of maize
In precision seeding operations, the irregular shapes of maize seed particles and the suboptimal geometric structure of the seed tube contribute to the rolling and bouncing of seeds upon falling into the furrow, ultimately compromising seeding uniformity. To address this issue, a convergent groove-guided (CGG) seed tube was proposed based on the principle of brachistochrone curve considering friction (BCCF). The discrete element method (DEM) was employed to conduct a comprehensive phenomenological analysis and numerical investigation of particle guide characteristics. Bench tests and field experiments were designed to verify the simulation results. Through response surface analysis, the optimal seeding performance was achieved at a groove angle of 111.34°, tube incline angle of 1.56°, and ground speed of 7.2 km h−1, resulting in a lateral dispersion landing range of 11.10 mm, angular velocity of 17.38 rad s−1, seed landing speed variation coefficient of 2.29%, and plant spacing variation coefficient of 6.04%. Bench test results unveiled that, under a ground speed of 7.2 km h−1, the variation coefficient of plant spacing for CGG seed tubes was measured at 7.63%, with a deviation of 1.59% from the simulation results. At high ground speeds of 9.0–14.4 km h−1, the seed guiding performance was also better than traditional seed tubes. Consistent results were also verified through field experiments. Therefore, the CGG seed tube manifested superior seed guidance efficacy when juxtaposed with its conventional counterpart, and this design can provide technical support for the realization of seed-to-ground positioning technology.
期刊介绍:
Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.