Dalyapraz Manatova , Charles DeVries , Sagar Samtani
{"title":"了解你的黑客社区检测和调查黑客社区的方法","authors":"Dalyapraz Manatova , Charles DeVries , Sagar Samtani","doi":"10.1016/j.dss.2024.114271","DOIUrl":null,"url":null,"abstract":"<div><p>Cyber threat intelligence (CTI) researchers strive to uncover collaborations and emerging techniques within hacker networks. This study proposes an empirical approach to detect communities within hacker forums for CTI purposes. Eighteen algorithms are systematically evaluated, including state-of-the-art and benchmark methods for identifying overlapping and disjoint groups. Using discussions from five prominent English hacker forums, a comparative analysis examines the influence of the algorithms’ theoretical foundations on community detection. Since ground truths are unattainable for such networks, the study utilizes a multi-metric strategy, incorporating modularity, coverage, performance, and a newly introduced quality measure, Triplet Hub Potential, which quantifies the presence of influential hubs. The findings reveal that while modularity optimization algorithms such as Leiden and Louvain deliver consistent results, neighbor-based expanding techniques tend to provide superior performance. In particular, the Expansion algorithm stood out by uncovering granular hierarchical community structures. The ability to investigate these intimacies is helpful for CTI researchers. Ultimately, we suggest an approach to investigate hacker forums using community detection methods and encourage the future development of algorithms tailored to expose nuances within hacker networks.</p></div>","PeriodicalId":55181,"journal":{"name":"Decision Support Systems","volume":"184 ","pages":"Article 114271"},"PeriodicalIF":6.7000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understand your shady neighborhood: An approach for detecting and investigating hacker communities\",\"authors\":\"Dalyapraz Manatova , Charles DeVries , Sagar Samtani\",\"doi\":\"10.1016/j.dss.2024.114271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cyber threat intelligence (CTI) researchers strive to uncover collaborations and emerging techniques within hacker networks. This study proposes an empirical approach to detect communities within hacker forums for CTI purposes. Eighteen algorithms are systematically evaluated, including state-of-the-art and benchmark methods for identifying overlapping and disjoint groups. Using discussions from five prominent English hacker forums, a comparative analysis examines the influence of the algorithms’ theoretical foundations on community detection. Since ground truths are unattainable for such networks, the study utilizes a multi-metric strategy, incorporating modularity, coverage, performance, and a newly introduced quality measure, Triplet Hub Potential, which quantifies the presence of influential hubs. The findings reveal that while modularity optimization algorithms such as Leiden and Louvain deliver consistent results, neighbor-based expanding techniques tend to provide superior performance. In particular, the Expansion algorithm stood out by uncovering granular hierarchical community structures. The ability to investigate these intimacies is helpful for CTI researchers. Ultimately, we suggest an approach to investigate hacker forums using community detection methods and encourage the future development of algorithms tailored to expose nuances within hacker networks.</p></div>\",\"PeriodicalId\":55181,\"journal\":{\"name\":\"Decision Support Systems\",\"volume\":\"184 \",\"pages\":\"Article 114271\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Support Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167923624001040\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Support Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167923624001040","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Understand your shady neighborhood: An approach for detecting and investigating hacker communities
Cyber threat intelligence (CTI) researchers strive to uncover collaborations and emerging techniques within hacker networks. This study proposes an empirical approach to detect communities within hacker forums for CTI purposes. Eighteen algorithms are systematically evaluated, including state-of-the-art and benchmark methods for identifying overlapping and disjoint groups. Using discussions from five prominent English hacker forums, a comparative analysis examines the influence of the algorithms’ theoretical foundations on community detection. Since ground truths are unattainable for such networks, the study utilizes a multi-metric strategy, incorporating modularity, coverage, performance, and a newly introduced quality measure, Triplet Hub Potential, which quantifies the presence of influential hubs. The findings reveal that while modularity optimization algorithms such as Leiden and Louvain deliver consistent results, neighbor-based expanding techniques tend to provide superior performance. In particular, the Expansion algorithm stood out by uncovering granular hierarchical community structures. The ability to investigate these intimacies is helpful for CTI researchers. Ultimately, we suggest an approach to investigate hacker forums using community detection methods and encourage the future development of algorithms tailored to expose nuances within hacker networks.
期刊介绍:
The common thread of articles published in Decision Support Systems is their relevance to theoretical and technical issues in the support of enhanced decision making. The areas addressed may include foundations, functionality, interfaces, implementation, impacts, and evaluation of decision support systems (DSSs).