原位进化 H2 对木炭填料床中 C+H2O 反应的逐步抑制:实验启示与理论分析。

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING Bioresource Technology Pub Date : 2024-08-01 Epub Date: 2024-07-05 DOI:10.1016/j.biortech.2024.131058
N Mohammed Asheruddin, Anand M Shivapuji, S Dasappa
{"title":"原位进化 H2 对木炭填料床中 C+H2O 反应的逐步抑制:实验启示与理论分析。","authors":"N Mohammed Asheruddin, Anand M Shivapuji, S Dasappa","doi":"10.1016/j.biortech.2024.131058","DOIUrl":null,"url":null,"abstract":"<p><p>Previous research on Char reactions with gas phase compounds under micro-thermogravimetry systems shows that hydrogen inhibits heterogeneous char reactions. However, its impact on larger gasification systems with evolving hydrogen profiles remains largely unexplored. This study examines a macro-scale wood char bed to understand the influence of in situ evolving hydrogen on char reactions. When subjected to a specific steam flux, carbon conversion and pore morphology changes are mainly confined to the bed's upstream, with the downstream char retaining its original characteristics. Numerical investigations reveal over 75 % of species production and consumption occurs within the initial 20 % of bed height. Fourier-transform infrared spectroscopy confirms hydrogen-induced inhibition in downstream segments, showing a shift from C-OH to C-H bonds. Particle-scale analysis indicates significantly higher rates of hydrogen diffusion and adsorption compared to H<sub>2</sub>O, impeding downstream C+H<sub>2</sub>O reactions. Increased temperature, higher reactant concentrations, or reduced residence time can overcome this inhibition, enhancing conversion rates. These findings are critical for optimizing steam-to-biomass ratios in oxy-steam gasification systems for generating hydrogen-rich syngas.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":null,"pages":null},"PeriodicalIF":9.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progressive inhibition of C+H<sub>2</sub>O reaction in wood char packed bed by in-situ evolving H<sub>2</sub>: Experimental insights and theoretical analysis.\",\"authors\":\"N Mohammed Asheruddin, Anand M Shivapuji, S Dasappa\",\"doi\":\"10.1016/j.biortech.2024.131058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previous research on Char reactions with gas phase compounds under micro-thermogravimetry systems shows that hydrogen inhibits heterogeneous char reactions. However, its impact on larger gasification systems with evolving hydrogen profiles remains largely unexplored. This study examines a macro-scale wood char bed to understand the influence of in situ evolving hydrogen on char reactions. When subjected to a specific steam flux, carbon conversion and pore morphology changes are mainly confined to the bed's upstream, with the downstream char retaining its original characteristics. Numerical investigations reveal over 75 % of species production and consumption occurs within the initial 20 % of bed height. Fourier-transform infrared spectroscopy confirms hydrogen-induced inhibition in downstream segments, showing a shift from C-OH to C-H bonds. Particle-scale analysis indicates significantly higher rates of hydrogen diffusion and adsorption compared to H<sub>2</sub>O, impeding downstream C+H<sub>2</sub>O reactions. Increased temperature, higher reactant concentrations, or reduced residence time can overcome this inhibition, enhancing conversion rates. These findings are critical for optimizing steam-to-biomass ratios in oxy-steam gasification systems for generating hydrogen-rich syngas.</p>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biortech.2024.131058\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.131058","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

以往在微重热系统下进行的炭与气相化合物反应研究表明,氢会抑制异相炭反应。然而,氢气对氢气分布不断变化的大型气化系统的影响在很大程度上仍未得到探讨。本研究考察了一个宏观尺度的木炭床,以了解原位演化氢对木炭反应的影响。在特定蒸汽通量的作用下,碳转化和孔隙形态的变化主要局限于床层的上游,而下游的木炭则保持其原有特性。数值研究表明,超过 75% 的物种生成和消耗发生在床层最初 20% 的高度范围内。傅立叶变换红外光谱证实了氢气在下游段引起的抑制作用,显示出从 C-OH 键到 C-H 键的转变。颗粒尺度分析表明,与 H2O 相比,氢的扩散和吸附速率明显更高,从而阻碍了下游的 C+H2O 反应。提高温度、增加反应物浓度或缩短停留时间可以克服这种抑制作用,从而提高转化率。这些发现对于优化富氧-蒸汽气化系统中蒸汽与生物质的比例以产生富氢合成气至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Progressive inhibition of C+H2O reaction in wood char packed bed by in-situ evolving H2: Experimental insights and theoretical analysis.

Previous research on Char reactions with gas phase compounds under micro-thermogravimetry systems shows that hydrogen inhibits heterogeneous char reactions. However, its impact on larger gasification systems with evolving hydrogen profiles remains largely unexplored. This study examines a macro-scale wood char bed to understand the influence of in situ evolving hydrogen on char reactions. When subjected to a specific steam flux, carbon conversion and pore morphology changes are mainly confined to the bed's upstream, with the downstream char retaining its original characteristics. Numerical investigations reveal over 75 % of species production and consumption occurs within the initial 20 % of bed height. Fourier-transform infrared spectroscopy confirms hydrogen-induced inhibition in downstream segments, showing a shift from C-OH to C-H bonds. Particle-scale analysis indicates significantly higher rates of hydrogen diffusion and adsorption compared to H2O, impeding downstream C+H2O reactions. Increased temperature, higher reactant concentrations, or reduced residence time can overcome this inhibition, enhancing conversion rates. These findings are critical for optimizing steam-to-biomass ratios in oxy-steam gasification systems for generating hydrogen-rich syngas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
期刊最新文献
Enhancing humic acids production from cornstalk under fast hydrothermal conditions: Insights into new pathways of skeleton self-polymerization and branch growth. Diversity in mechanisms of natural humic acid enhanced current production in soil bioelectrochemical systems. Occurrence and mechanism of sulfamethoxazole in alginate-like extracellular polymers from excess sludge. Mutagenesis and fluorescence-activated cell sorting of oleaginous Saccharomyces cerevisiae and the multi-omics analysis of its high lipid accumulation mechanisms. Sustainable production of a biotechnologically relevant β-galactosidase in Escherichia coli cells using crude glycerol and cheese whey permeate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1