{"title":"从心脏大静脉内进行局部单极脉冲场消融,治疗射频消融失败后的特发性室性早搏。","authors":"","doi":"10.1016/j.hrthm.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Idiopathic epicardial premature ventricular contractions (PVCs) originating from the left ventricular summit are difficult to eliminate.</div></div><div><h3>Objective</h3><div>The purpose of this study was to describe the feasibility and procedural safety of monopolar biphasic focal pulsed field ablation (F-PFA) from within the great cardiac vein (GCV) for treatment of idiopathic epicardial PVCs.</div></div><div><h3>Methods</h3><div>In 4 pigs, F-PFA (Centauri, CardioFocus) was applied from within the GCV followed by macroscopic gross analysis. In 4 patients with previously failed radiofrequency ablation, electroanatomic mapping was used to guide F-PFA from within the GCV and the ventricular outflow tracts. Coronary angiography and optical coherence tomography (OCT) were performed in 2 patients.</div></div><div><h3>Results</h3><div>In pigs, F-PFA from within the GCV (5 mm away from the coronary arteries) resulted in myocardial lesions with a maximal depth of 4 mm, which was associated with nonobstructive transient coronary spasms. In patients, sequential delivery of F-PFA in the ventricular outflow tracts and from within the GCV eliminated the PVCs. During F-PFA delivery from within the GCV with prophylactic nitroglycerin application, coronary angiography showed no coronary spasm when F-PFA was delivered >5 mm away from the coronary artery and a transient coronary spasm without changes in a subsequent OCT, when F-PFA was delivered directly on the coronary artery. Intracardiac echocardiography and computed tomography integration was used to monitor F-PFA delivery from within the GCV. There were no immediate or short-term complications.</div></div><div><h3>Conclusion</h3><div>Sequential mapping-guided F-PFA from endocardial ventricular outflow tracts and from within the GCV is feasible with a favorable procedural safety profile for treatment of epicardial PVCs.</div></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Focal monopolar pulsed field ablation from within the great cardiac vein for idiopathic premature ventricular contractions after failed radiofrequency ablation\",\"authors\":\"\",\"doi\":\"10.1016/j.hrthm.2024.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Idiopathic epicardial premature ventricular contractions (PVCs) originating from the left ventricular summit are difficult to eliminate.</div></div><div><h3>Objective</h3><div>The purpose of this study was to describe the feasibility and procedural safety of monopolar biphasic focal pulsed field ablation (F-PFA) from within the great cardiac vein (GCV) for treatment of idiopathic epicardial PVCs.</div></div><div><h3>Methods</h3><div>In 4 pigs, F-PFA (Centauri, CardioFocus) was applied from within the GCV followed by macroscopic gross analysis. In 4 patients with previously failed radiofrequency ablation, electroanatomic mapping was used to guide F-PFA from within the GCV and the ventricular outflow tracts. Coronary angiography and optical coherence tomography (OCT) were performed in 2 patients.</div></div><div><h3>Results</h3><div>In pigs, F-PFA from within the GCV (5 mm away from the coronary arteries) resulted in myocardial lesions with a maximal depth of 4 mm, which was associated with nonobstructive transient coronary spasms. In patients, sequential delivery of F-PFA in the ventricular outflow tracts and from within the GCV eliminated the PVCs. During F-PFA delivery from within the GCV with prophylactic nitroglycerin application, coronary angiography showed no coronary spasm when F-PFA was delivered >5 mm away from the coronary artery and a transient coronary spasm without changes in a subsequent OCT, when F-PFA was delivered directly on the coronary artery. Intracardiac echocardiography and computed tomography integration was used to monitor F-PFA delivery from within the GCV. There were no immediate or short-term complications.</div></div><div><h3>Conclusion</h3><div>Sequential mapping-guided F-PFA from endocardial ventricular outflow tracts and from within the GCV is feasible with a favorable procedural safety profile for treatment of epicardial PVCs.</div></div>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S154752712402873X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S154752712402873X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Focal monopolar pulsed field ablation from within the great cardiac vein for idiopathic premature ventricular contractions after failed radiofrequency ablation
Background
Idiopathic epicardial premature ventricular contractions (PVCs) originating from the left ventricular summit are difficult to eliminate.
Objective
The purpose of this study was to describe the feasibility and procedural safety of monopolar biphasic focal pulsed field ablation (F-PFA) from within the great cardiac vein (GCV) for treatment of idiopathic epicardial PVCs.
Methods
In 4 pigs, F-PFA (Centauri, CardioFocus) was applied from within the GCV followed by macroscopic gross analysis. In 4 patients with previously failed radiofrequency ablation, electroanatomic mapping was used to guide F-PFA from within the GCV and the ventricular outflow tracts. Coronary angiography and optical coherence tomography (OCT) were performed in 2 patients.
Results
In pigs, F-PFA from within the GCV (5 mm away from the coronary arteries) resulted in myocardial lesions with a maximal depth of 4 mm, which was associated with nonobstructive transient coronary spasms. In patients, sequential delivery of F-PFA in the ventricular outflow tracts and from within the GCV eliminated the PVCs. During F-PFA delivery from within the GCV with prophylactic nitroglycerin application, coronary angiography showed no coronary spasm when F-PFA was delivered >5 mm away from the coronary artery and a transient coronary spasm without changes in a subsequent OCT, when F-PFA was delivered directly on the coronary artery. Intracardiac echocardiography and computed tomography integration was used to monitor F-PFA delivery from within the GCV. There were no immediate or short-term complications.
Conclusion
Sequential mapping-guided F-PFA from endocardial ventricular outflow tracts and from within the GCV is feasible with a favorable procedural safety profile for treatment of epicardial PVCs.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.