毛霉菌作为小麦白粉病生物防治的有效性和遗传控制。

IF 2.6 2区 农林科学 Q2 PLANT SCIENCES Phytopathology Pub Date : 2024-10-01 Epub Date: 2024-10-16 DOI:10.1094/PHYTO-05-24-0157-R
Amira M I Mourad, Andreas Börner, Samar M Esmail
{"title":"毛霉菌作为小麦白粉病生物防治的有效性和遗传控制。","authors":"Amira M I Mourad, Andreas Börner, Samar M Esmail","doi":"10.1094/PHYTO-05-24-0157-R","DOIUrl":null,"url":null,"abstract":"<p><p>Wheat powdery mildew (WPM) is one of the most devasting diseases that affects wheat yield worldwide. Few efforts have been made to control such a serious disease. An effective way to control WPM is urgently needed. Biological control is an effective way to control plant diseases worldwide. In this study, the efficiency of three different <i>Trichoderma</i> spp. in controlling WPM at the seedling growth stage was tested using 35 highly diverse wheat genotypes. Highly significant differences were found in WPM resistance among the four treatments, confirming the efficiency of <i>Trichoderma</i> in controlling WPM. Of the three species, <i>T. asperellum</i> T34 (T34) was the most effective species in controlling WPM, as it reduced the symptoms by 50.56%. A set of 196 wheat genotypes was used to identify the genetic control of the WPM resistance induced by T34. A total of 39, 27, and 18 gene models were identified to contain the significant markers under Pm, T34, and the improvement in powdery mildew resistance due to T34 (T34_improvement) conditions. Furthermore, no gene model was common between T34 and Pm, suggesting the presence of completely different genetic systems controlling the resistance under T34 and Pm. The functional annotation and biological process pathways of the detected gene models confirm their association with the normal and induced resistance. This study, for the first time, confirms the efficiency of T34 in controlling WPM and provides a deep understanding of the genetic control of induced and normal resistance to WPM.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2221-2234"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effectiveness and Genetic Control of <i>Trichoderma</i> spp. as a Biological Control of Wheat Powdery Mildew Disease.\",\"authors\":\"Amira M I Mourad, Andreas Börner, Samar M Esmail\",\"doi\":\"10.1094/PHYTO-05-24-0157-R\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wheat powdery mildew (WPM) is one of the most devasting diseases that affects wheat yield worldwide. Few efforts have been made to control such a serious disease. An effective way to control WPM is urgently needed. Biological control is an effective way to control plant diseases worldwide. In this study, the efficiency of three different <i>Trichoderma</i> spp. in controlling WPM at the seedling growth stage was tested using 35 highly diverse wheat genotypes. Highly significant differences were found in WPM resistance among the four treatments, confirming the efficiency of <i>Trichoderma</i> in controlling WPM. Of the three species, <i>T. asperellum</i> T34 (T34) was the most effective species in controlling WPM, as it reduced the symptoms by 50.56%. A set of 196 wheat genotypes was used to identify the genetic control of the WPM resistance induced by T34. A total of 39, 27, and 18 gene models were identified to contain the significant markers under Pm, T34, and the improvement in powdery mildew resistance due to T34 (T34_improvement) conditions. Furthermore, no gene model was common between T34 and Pm, suggesting the presence of completely different genetic systems controlling the resistance under T34 and Pm. The functional annotation and biological process pathways of the detected gene models confirm their association with the normal and induced resistance. This study, for the first time, confirms the efficiency of T34 in controlling WPM and provides a deep understanding of the genetic control of induced and normal resistance to WPM.</p>\",\"PeriodicalId\":20410,\"journal\":{\"name\":\"Phytopathology\",\"volume\":\" \",\"pages\":\"2221-2234\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytopathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1094/PHYTO-05-24-0157-R\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-05-24-0157-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

小麦白粉病(WPM)是影响全球小麦产量的最严重病害之一。对于如此严重的病害,人们几乎没有采取任何防治措施。寻找一种有效的方法来控制小麦白粉病迫在眉睫。生物防治是世界范围内控制植物病害的有效方法。在这项研究中,使用 35 种高度多样化的小麦基因型测试了三种不同的毛霉菌属在幼苗生长阶段控制 WPM 的效率。结果发现,四种处理之间对 WPM 的抗性差异很大,这证实了毛霉菌在控制 WPM 方面的功效。在三个菌种中,T34(Trichoderma asperellum T34)是对 WPM 控制最有效的菌种,因为它减少了 50.56% 的症状。一组 196 个小麦基因型被用来鉴定 T34 对 WPM 诱导抗性的遗传控制。结果发现,在 Pm、T34 和 T34(T34_improvement)条件下,分别有 39、27 和 18 个基因模型含有显著标记。此外,在 T34 和 Pm 条件下没有共同的基因模型,这表明在 T34 和 Pm 条件下存在完全不同的基因系统控制抗性。检测到的基因模型的功能注释和生物过程路径证实了它们与正常抗性和诱导抗性的关联。该研究首次证实了 T34 在控制 WPM 方面的效率,并为深入了解 WPM 诱导抗性和正常抗性的遗传调控提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effectiveness and Genetic Control of Trichoderma spp. as a Biological Control of Wheat Powdery Mildew Disease.

Wheat powdery mildew (WPM) is one of the most devasting diseases that affects wheat yield worldwide. Few efforts have been made to control such a serious disease. An effective way to control WPM is urgently needed. Biological control is an effective way to control plant diseases worldwide. In this study, the efficiency of three different Trichoderma spp. in controlling WPM at the seedling growth stage was tested using 35 highly diverse wheat genotypes. Highly significant differences were found in WPM resistance among the four treatments, confirming the efficiency of Trichoderma in controlling WPM. Of the three species, T. asperellum T34 (T34) was the most effective species in controlling WPM, as it reduced the symptoms by 50.56%. A set of 196 wheat genotypes was used to identify the genetic control of the WPM resistance induced by T34. A total of 39, 27, and 18 gene models were identified to contain the significant markers under Pm, T34, and the improvement in powdery mildew resistance due to T34 (T34_improvement) conditions. Furthermore, no gene model was common between T34 and Pm, suggesting the presence of completely different genetic systems controlling the resistance under T34 and Pm. The functional annotation and biological process pathways of the detected gene models confirm their association with the normal and induced resistance. This study, for the first time, confirms the efficiency of T34 in controlling WPM and provides a deep understanding of the genetic control of induced and normal resistance to WPM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Phytopathology
Phytopathology 生物-植物科学
CiteScore
5.90
自引率
9.40%
发文量
505
审稿时长
4-8 weeks
期刊介绍: Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.
期刊最新文献
First Reported Sexual Recombination Between Pyrenophora teres Isolates from Barley and Barley Grass. Mapping Seedling and Adult Plant Leaf Rust Resistance Genes in the Durum Wheat Cultivar Strongfield and Other Triticum turgidum Lines. An Engineered Citrus Tristeza Virus (T36CA)-Based Vector Induces Gene-Specific RNA Silencing and Is Graft Transmissible to Commercial Citrus Varieties. Investigation of the effectiveness and molecular mechanisms of thiamin priming to control early blight disease in potato. Genetic Variability and Evolutionary Dynamics of Papaya Ringspot Virus and Papaya Leaf Distortion Mosaic Virus Infecting Feral Papaya in Hainan Island.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1