{"title":"三电纳米发电机中的双极性开路电压源于两种状态的串联阻抗。","authors":"Jiwon Jeong, Jiyoung Ko, Jongjin Lee","doi":"10.1186/s11671-024-04056-y","DOIUrl":null,"url":null,"abstract":"<p><p>Experimental and simulation studies demonstrated that the initial voltage setting significantly influences the open-circuit voltage (V<sub>OC</sub>) in triboelectric nanogenerators (TENGs). Utilizing diode configurations, we consistently observed two distinct V<sub>OC</sub>s independent of the initial settings. A lower V<sub>OC</sub> corresponded to the surface voltage (V<sub>Surface</sub>), while a higher V<sub>OC</sub> was amplified by the product of the V<sub>Surface</sub> and the TENG's characteristic impedance ratio. Notably, a lower measurement system capacitance provided a more precise representation of the inherent characteristics of the TENG. Conversely, an increase in system impedance led to a convergence of the two V<sub>OC</sub>s and a reduction in their magnitudes relative to V<sub>Surface</sub>. These findings suggest that optimizing the initial/repeated charge balancing and minimizing capacitive loads are crucial for maximizing TENG output power in practical applications.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"111"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227483/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dual polarity open circuit voltage in triboelectric nanogenerators originated from two states series impedance.\",\"authors\":\"Jiwon Jeong, Jiyoung Ko, Jongjin Lee\",\"doi\":\"10.1186/s11671-024-04056-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Experimental and simulation studies demonstrated that the initial voltage setting significantly influences the open-circuit voltage (V<sub>OC</sub>) in triboelectric nanogenerators (TENGs). Utilizing diode configurations, we consistently observed two distinct V<sub>OC</sub>s independent of the initial settings. A lower V<sub>OC</sub> corresponded to the surface voltage (V<sub>Surface</sub>), while a higher V<sub>OC</sub> was amplified by the product of the V<sub>Surface</sub> and the TENG's characteristic impedance ratio. Notably, a lower measurement system capacitance provided a more precise representation of the inherent characteristics of the TENG. Conversely, an increase in system impedance led to a convergence of the two V<sub>OC</sub>s and a reduction in their magnitudes relative to V<sub>Surface</sub>. These findings suggest that optimizing the initial/repeated charge balancing and minimizing capacitive loads are crucial for maximizing TENG output power in practical applications.</p>\",\"PeriodicalId\":72828,\"journal\":{\"name\":\"Discover nano\",\"volume\":\"19 1\",\"pages\":\"111\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227483/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discover nano\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s11671-024-04056-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover nano","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s11671-024-04056-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
实验和模拟研究表明,初始电压设置对三电纳米发电机(TENGs)的开路电压(VOC)有很大影响。利用二极管配置,我们持续观察到两种不同的 VOC,它们与初始设置无关。较低的 VOC 与表面电压 (VSurface) 相对应,而较高的 VOC 则由 VSurface 与 TENG 特性阻抗比的乘积放大。值得注意的是,较低的测量系统电容可以更精确地反映 TENG 的固有特性。相反,系统阻抗的增加会使两个 VOC 趋于一致,并降低它们相对于 VSurface 的幅度。这些发现表明,在实际应用中,优化初始/重复电荷平衡和最小化电容负载对于最大化 TENG 输出功率至关重要。
Dual polarity open circuit voltage in triboelectric nanogenerators originated from two states series impedance.
Experimental and simulation studies demonstrated that the initial voltage setting significantly influences the open-circuit voltage (VOC) in triboelectric nanogenerators (TENGs). Utilizing diode configurations, we consistently observed two distinct VOCs independent of the initial settings. A lower VOC corresponded to the surface voltage (VSurface), while a higher VOC was amplified by the product of the VSurface and the TENG's characteristic impedance ratio. Notably, a lower measurement system capacitance provided a more precise representation of the inherent characteristics of the TENG. Conversely, an increase in system impedance led to a convergence of the two VOCs and a reduction in their magnitudes relative to VSurface. These findings suggest that optimizing the initial/repeated charge balancing and minimizing capacitive loads are crucial for maximizing TENG output power in practical applications.