利用聚合物/催化剂/离子体异质结设计提高二氧化碳还原电催化剂的二氧化硫耐受性

IF 49.7 1区 材料科学 Q1 ENERGY & FUELS Nature Energy Pub Date : 2024-07-04 DOI:10.1038/s41560-024-01577-9
Panagiotis Papangelakis, Rui Kai Miao, Ruihu Lu, Hanqi Liu, Xi Wang, Adnan Ozden, Shijie Liu, Ning Sun, Colin P. O’Brien, Yongfeng Hu, Mohsen Shakouri, Qunfeng Xiao, Mengsha Li, Behrooz Khatir, Jianan Erick Huang, Yakun Wang, Yurou Celine Xiao, Feng Li, Ali Shayesteh Zeraati, Qiang Zhang, Pengyu Liu, Kevin Golovin, Jane Y. Howe, Hongyan Liang, Ziyun Wang, Jun Li, Edward H. Sargent, David Sinton
{"title":"利用聚合物/催化剂/离子体异质结设计提高二氧化碳还原电催化剂的二氧化硫耐受性","authors":"Panagiotis Papangelakis, Rui Kai Miao, Ruihu Lu, Hanqi Liu, Xi Wang, Adnan Ozden, Shijie Liu, Ning Sun, Colin P. O’Brien, Yongfeng Hu, Mohsen Shakouri, Qunfeng Xiao, Mengsha Li, Behrooz Khatir, Jianan Erick Huang, Yakun Wang, Yurou Celine Xiao, Feng Li, Ali Shayesteh Zeraati, Qiang Zhang, Pengyu Liu, Kevin Golovin, Jane Y. Howe, Hongyan Liang, Ziyun Wang, Jun Li, Edward H. Sargent, David Sinton","doi":"10.1038/s41560-024-01577-9","DOIUrl":null,"url":null,"abstract":"The high concentrations of CO2 in industrial flue gases make these point sources attractive candidates for renewably powered electrocatalytic conversion of CO2 to products. However, trace SO2 in common flue gases rapidly and irreversibly poisons catalysts. Here we report that limiting hydrogen adsorption in the vicinity of electrochemically active sites deactivates SO2 to enable efficient CO2 conversion. We realize this approach via a polymer/catalyst/ionomer heterojunction design with combined hydrophobic and highly charged hydrophilic domains that diminish hydrogen adsorption and promote CO2 over SO2 transport. We develop an SO2-tolerant system that maintains ~50% faradaic efficiency towards multi-carbon products for over 150 h (at 100 mA cm–2). Extending this strategy to a high-surface-area composite catalyst, we achieve faradaic efficiencies of 84%, partial current densities of up to 790 mA cm–2 and energy efficiencies of ~25% towards multi-carbon products with a CO2 stream containing 400 ppm SO2, a performance that is competitive with the best reports using pure CO2. While the high concentration of CO2 in flue gas makes it an attractive feedstock for electrocatalytic production of useful molecules, SO2 contaminants can poison catalysts. Here the authors report a polymer/catalyst/ionomer heterojunction design with hydrophobic and hydrophilic domains that improves the SO2 tolerance of a Cu catalyst.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":49.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the SO2 tolerance of CO2 reduction electrocatalysts using a polymer/catalyst/ionomer heterojunction design\",\"authors\":\"Panagiotis Papangelakis, Rui Kai Miao, Ruihu Lu, Hanqi Liu, Xi Wang, Adnan Ozden, Shijie Liu, Ning Sun, Colin P. O’Brien, Yongfeng Hu, Mohsen Shakouri, Qunfeng Xiao, Mengsha Li, Behrooz Khatir, Jianan Erick Huang, Yakun Wang, Yurou Celine Xiao, Feng Li, Ali Shayesteh Zeraati, Qiang Zhang, Pengyu Liu, Kevin Golovin, Jane Y. Howe, Hongyan Liang, Ziyun Wang, Jun Li, Edward H. Sargent, David Sinton\",\"doi\":\"10.1038/s41560-024-01577-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high concentrations of CO2 in industrial flue gases make these point sources attractive candidates for renewably powered electrocatalytic conversion of CO2 to products. However, trace SO2 in common flue gases rapidly and irreversibly poisons catalysts. Here we report that limiting hydrogen adsorption in the vicinity of electrochemically active sites deactivates SO2 to enable efficient CO2 conversion. We realize this approach via a polymer/catalyst/ionomer heterojunction design with combined hydrophobic and highly charged hydrophilic domains that diminish hydrogen adsorption and promote CO2 over SO2 transport. We develop an SO2-tolerant system that maintains ~50% faradaic efficiency towards multi-carbon products for over 150 h (at 100 mA cm–2). Extending this strategy to a high-surface-area composite catalyst, we achieve faradaic efficiencies of 84%, partial current densities of up to 790 mA cm–2 and energy efficiencies of ~25% towards multi-carbon products with a CO2 stream containing 400 ppm SO2, a performance that is competitive with the best reports using pure CO2. While the high concentration of CO2 in flue gas makes it an attractive feedstock for electrocatalytic production of useful molecules, SO2 contaminants can poison catalysts. Here the authors report a polymer/catalyst/ionomer heterojunction design with hydrophobic and hydrophilic domains that improves the SO2 tolerance of a Cu catalyst.\",\"PeriodicalId\":19073,\"journal\":{\"name\":\"Nature Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":49.7000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41560-024-01577-9\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41560-024-01577-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

工业烟气中的高浓度 CO2 使这些点源成为将 CO2 转化为产品的可再生能源电催化的候选对象。然而,普通烟气中的痕量二氧化硫会迅速且不可逆地毒害催化剂。我们在此报告,限制电化学活性位点附近的氢吸附可使二氧化硫失活,从而实现二氧化碳的高效转化。我们通过聚合物/催化剂/离子体异质结设计实现了这一方法,该设计结合了疏水和高电荷亲水结构域,可减少氢气吸附并促进二氧化碳而非二氧化硫的传输。我们开发了一种耐二氧化硫的系统,在 100 mA cm-2 的条件下,该系统能在 150 小时内对多碳产品保持约 50% 的远达效率。将这一策略扩展到高表面积复合催化剂后,在含有 400 ppm SO2 的二氧化碳流中,我们获得了 84% 的法拉第达效率、高达 790 mA cm-2 的部分电流密度和 ~25% 的多碳产品能效,这一性能可与使用纯二氧化碳的最佳报告相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the SO2 tolerance of CO2 reduction electrocatalysts using a polymer/catalyst/ionomer heterojunction design
The high concentrations of CO2 in industrial flue gases make these point sources attractive candidates for renewably powered electrocatalytic conversion of CO2 to products. However, trace SO2 in common flue gases rapidly and irreversibly poisons catalysts. Here we report that limiting hydrogen adsorption in the vicinity of electrochemically active sites deactivates SO2 to enable efficient CO2 conversion. We realize this approach via a polymer/catalyst/ionomer heterojunction design with combined hydrophobic and highly charged hydrophilic domains that diminish hydrogen adsorption and promote CO2 over SO2 transport. We develop an SO2-tolerant system that maintains ~50% faradaic efficiency towards multi-carbon products for over 150 h (at 100 mA cm–2). Extending this strategy to a high-surface-area composite catalyst, we achieve faradaic efficiencies of 84%, partial current densities of up to 790 mA cm–2 and energy efficiencies of ~25% towards multi-carbon products with a CO2 stream containing 400 ppm SO2, a performance that is competitive with the best reports using pure CO2. While the high concentration of CO2 in flue gas makes it an attractive feedstock for electrocatalytic production of useful molecules, SO2 contaminants can poison catalysts. Here the authors report a polymer/catalyst/ionomer heterojunction design with hydrophobic and hydrophilic domains that improves the SO2 tolerance of a Cu catalyst.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
期刊最新文献
A wind of change in sustainability The role of policy and module manufacturing learning in industrial decarbonization by small modular reactors The impact of interfacial quality and nanoscale performance disorder on the stability of alloyed perovskite solar cells A nationally determined contribution framework for energy transition minerals Transparency is key for energy and environment philanthropy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1