生成可积分表达式的柳维尔生成器

Rashid Barket, Matthew England, Jürgen Gerhard
{"title":"生成可积分表达式的柳维尔生成器","authors":"Rashid Barket, Matthew England, Jürgen Gerhard","doi":"arxiv-2406.11631","DOIUrl":null,"url":null,"abstract":"There has been a growing need to devise processes that can create\ncomprehensive datasets in the world of Computer Algebra, both for accurate\nbenchmarking and for new intersections with machine learning technology. We\npresent here a method to generate integrands that are guaranteed to be\nintegrable, dubbed the LIOUVILLE method. It is based on Liouville's theorem and\nthe Parallel Risch Algorithm for symbolic integration. We show that this data generation method retains the best qualities of\nprevious data generation methods, while overcoming some of the issues built\ninto that prior work. The LIOUVILLE generator is able to generate sufficiently\ncomplex and realistic integrands, and could be used for benchmarking or machine\nlearning training tasks related to symbolic integration.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"9 17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Liouville Generator for Producing Integrable Expressions\",\"authors\":\"Rashid Barket, Matthew England, Jürgen Gerhard\",\"doi\":\"arxiv-2406.11631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been a growing need to devise processes that can create\\ncomprehensive datasets in the world of Computer Algebra, both for accurate\\nbenchmarking and for new intersections with machine learning technology. We\\npresent here a method to generate integrands that are guaranteed to be\\nintegrable, dubbed the LIOUVILLE method. It is based on Liouville's theorem and\\nthe Parallel Risch Algorithm for symbolic integration. We show that this data generation method retains the best qualities of\\nprevious data generation methods, while overcoming some of the issues built\\ninto that prior work. The LIOUVILLE generator is able to generate sufficiently\\ncomplex and realistic integrands, and could be used for benchmarking or machine\\nlearning training tasks related to symbolic integration.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"9 17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.11631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.11631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在计算机代数领域,人们越来越需要设计出能够创建综合数据集的过程,以用于精确基准测试以及与机器学习技术的新交叉。我们在此介绍一种生成保证可积分的积分的方法,称为 "LIOUVILLE 方法"。该方法基于Liouville定理和符号积分并行Risch算法。我们证明,这种数据生成方法保留了以前数据生成方法的优点,同时克服了以前工作中存在的一些问题。LIOUVILLE生成器能够生成足够复杂和现实的积分,可用于与符号积分相关的基准测试或机器学习训练任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Liouville Generator for Producing Integrable Expressions
There has been a growing need to devise processes that can create comprehensive datasets in the world of Computer Algebra, both for accurate benchmarking and for new intersections with machine learning technology. We present here a method to generate integrands that are guaranteed to be integrable, dubbed the LIOUVILLE method. It is based on Liouville's theorem and the Parallel Risch Algorithm for symbolic integration. We show that this data generation method retains the best qualities of previous data generation methods, while overcoming some of the issues built into that prior work. The LIOUVILLE generator is able to generate sufficiently complex and realistic integrands, and could be used for benchmarking or machine learning training tasks related to symbolic integration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1