离散时间动态系统可解释模型的表达式符号回归

Adarsh Iyer, Nibodh Boddupalli, Jeff Moehlis
{"title":"离散时间动态系统可解释模型的表达式符号回归","authors":"Adarsh Iyer, Nibodh Boddupalli, Jeff Moehlis","doi":"arxiv-2406.06585","DOIUrl":null,"url":null,"abstract":"Interpretable mathematical expressions defining discrete-time dynamical\nsystems (iterated maps) can model many phenomena of scientific interest,\nenabling a deeper understanding of system behaviors. Since formulating\ngoverning expressions from first principles can be difficult, it is of\nparticular interest to identify expressions for iterated maps given only their\ndata streams. In this work, we consider a modified Symbolic Artificial Neural\nNetwork-Trained Expressions (SymANNTEx) architecture for this task, an\narchitecture more expressive than others in the literature. We make a\nmodification to the model pipeline to optimize the regression, then\ncharacterize the behavior of the adjusted model in identifying several\nclassical chaotic maps. With the goal of parsimony, sparsity-inducing weight\nregularization and information theory-informed simplification are implemented.\nWe show that our modified SymANNTEx model properly identifies single-state maps\nand achieves moderate success in approximating a dual-state attractor. These\nperformances offer significant promise for data-driven scientific discovery and\ninterpretation.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"123 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expressive Symbolic Regression for Interpretable Models of Discrete-Time Dynamical Systems\",\"authors\":\"Adarsh Iyer, Nibodh Boddupalli, Jeff Moehlis\",\"doi\":\"arxiv-2406.06585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interpretable mathematical expressions defining discrete-time dynamical\\nsystems (iterated maps) can model many phenomena of scientific interest,\\nenabling a deeper understanding of system behaviors. Since formulating\\ngoverning expressions from first principles can be difficult, it is of\\nparticular interest to identify expressions for iterated maps given only their\\ndata streams. In this work, we consider a modified Symbolic Artificial Neural\\nNetwork-Trained Expressions (SymANNTEx) architecture for this task, an\\narchitecture more expressive than others in the literature. We make a\\nmodification to the model pipeline to optimize the regression, then\\ncharacterize the behavior of the adjusted model in identifying several\\nclassical chaotic maps. With the goal of parsimony, sparsity-inducing weight\\nregularization and information theory-informed simplification are implemented.\\nWe show that our modified SymANNTEx model properly identifies single-state maps\\nand achieves moderate success in approximating a dual-state attractor. These\\nperformances offer significant promise for data-driven scientific discovery and\\ninterpretation.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.06585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.06585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

定义离散时间动态系统(迭代图)的可解释数学表达式可以模拟许多科学现象,从而加深对系统行为的理解。由于从第一性原理出发制定管理表达式可能很困难,因此在仅给出迭代映射数据流的情况下识别其表达式就显得尤为重要。在这项工作中,我们考虑采用经过改进的符号人工神经网络训练表达式(SymANNTEx)架构来完成这项任务,这种架构比文献中的其他架构更具表现力。我们对模型管道进行了修改,以优化回归,然后描述了调整后的模型在识别几种经典混沌图时的行为。我们的研究表明,修改后的 SymANNTEx 模型可以正确识别单态图,并在近似双态吸引子方面取得了一定的成功。这些性能为数据驱动的科学发现和解释带来了重大希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Expressive Symbolic Regression for Interpretable Models of Discrete-Time Dynamical Systems
Interpretable mathematical expressions defining discrete-time dynamical systems (iterated maps) can model many phenomena of scientific interest, enabling a deeper understanding of system behaviors. Since formulating governing expressions from first principles can be difficult, it is of particular interest to identify expressions for iterated maps given only their data streams. In this work, we consider a modified Symbolic Artificial Neural Network-Trained Expressions (SymANNTEx) architecture for this task, an architecture more expressive than others in the literature. We make a modification to the model pipeline to optimize the regression, then characterize the behavior of the adjusted model in identifying several classical chaotic maps. With the goal of parsimony, sparsity-inducing weight regularization and information theory-informed simplification are implemented. We show that our modified SymANNTEx model properly identifies single-state maps and achieves moderate success in approximating a dual-state attractor. These performances offer significant promise for data-driven scientific discovery and interpretation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1