Qiaoyun Zhang, Jiahao Xu, Bingbing Wang, Minghao Zhao, Chunsheng Lu
{"title":"一维压电半导体弯曲梁的弯曲特性","authors":"Qiaoyun Zhang, Jiahao Xu, Bingbing Wang, Minghao Zhao, Chunsheng Lu","doi":"10.1007/s00419-024-02641-2","DOIUrl":null,"url":null,"abstract":"<div><p>A one-dimensional beam model with a curved longitudinal axis is established for piezoelectric semiconductors (PSCs) based on the first-order shear deformation theory and a small perturbation assumption of electron concentration. The PSC curved beam model is studied with one fixed end and a transverse force under the other end, and the analytical solutions of shear displacement, flexure displacement, electric potential, and electron concentration perturbation are derived using the differential operator method. The solutions of electromechanical fields are verified by degrading a curved beam into a straight one. According to numerical results, the distributions of electromechanical fields and effects of transverse force, initial electron concentration, and curvature radius are discussed on electromechanical fields. It is shown that the transverse force and curvature radius have an obvious influence on both the electrical and mechanical fields of the curved PSC beam, whereas the initial electron concentration mainly affects electrical quantities.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"94 10","pages":"2807 - 2818"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bending characteristics of a one-dimensional piezoelectric semiconductor curved beam\",\"authors\":\"Qiaoyun Zhang, Jiahao Xu, Bingbing Wang, Minghao Zhao, Chunsheng Lu\",\"doi\":\"10.1007/s00419-024-02641-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A one-dimensional beam model with a curved longitudinal axis is established for piezoelectric semiconductors (PSCs) based on the first-order shear deformation theory and a small perturbation assumption of electron concentration. The PSC curved beam model is studied with one fixed end and a transverse force under the other end, and the analytical solutions of shear displacement, flexure displacement, electric potential, and electron concentration perturbation are derived using the differential operator method. The solutions of electromechanical fields are verified by degrading a curved beam into a straight one. According to numerical results, the distributions of electromechanical fields and effects of transverse force, initial electron concentration, and curvature radius are discussed on electromechanical fields. It is shown that the transverse force and curvature radius have an obvious influence on both the electrical and mechanical fields of the curved PSC beam, whereas the initial electron concentration mainly affects electrical quantities.</p></div>\",\"PeriodicalId\":477,\"journal\":{\"name\":\"Archive of Applied Mechanics\",\"volume\":\"94 10\",\"pages\":\"2807 - 2818\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00419-024-02641-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-024-02641-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Bending characteristics of a one-dimensional piezoelectric semiconductor curved beam
A one-dimensional beam model with a curved longitudinal axis is established for piezoelectric semiconductors (PSCs) based on the first-order shear deformation theory and a small perturbation assumption of electron concentration. The PSC curved beam model is studied with one fixed end and a transverse force under the other end, and the analytical solutions of shear displacement, flexure displacement, electric potential, and electron concentration perturbation are derived using the differential operator method. The solutions of electromechanical fields are verified by degrading a curved beam into a straight one. According to numerical results, the distributions of electromechanical fields and effects of transverse force, initial electron concentration, and curvature radius are discussed on electromechanical fields. It is shown that the transverse force and curvature radius have an obvious influence on both the electrical and mechanical fields of the curved PSC beam, whereas the initial electron concentration mainly affects electrical quantities.
期刊介绍:
Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.