{"title":"使用极性隐写代码的无差错稳健型 JPEG 隐写术","authors":"Jimin Zhang, Xiaolei He, Yun Cao","doi":"10.1186/s13635-024-00173-4","DOIUrl":null,"url":null,"abstract":"Recently, a robust steganographic algorithm that achieves errorless robustness against JPEG recompression has been proposed. The method employs a lattice embedding scheme and utilizes the syndrome-trellis code (STC) for practical embedding. However, we have noticed that errorless robust embedding with STC may encounter failures due to modifications on wet coefficients, especially when a high quality factor is used by the compression channel. To solve this problem, we have discovered that using steganographic polar code (SPC) for embedding has better performance in avoiding modifications on wet coefficients. In this paper, we conduct theoretical analysis to prove the better performance of SPC in wet paper embedding. We establish the condition of avoiding modifications on wet coefficients, followed by presenting a recursive calculation method for determining the distribution of columns in the generator matrix of SPC. The findings reveal that SPC can avoid modifications on wet coefficients under a larger number of wet coefficients compared with STC, and therefore we propose a better errorless robust embedding method employing SPC. The experimental results demonstrate that under close security performance, the proposed method achieves a higher success rate compared with embedding with STC. Specifically, when the quality factor of the compressor is 95 and the payload size is 0.4 bpnzac, our method achieves a success rate of 99.85%, surpassing the 91.95% success rate of the embedding with STC.","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Errorless robust JPEG steganography using steganographic polar codes\",\"authors\":\"Jimin Zhang, Xiaolei He, Yun Cao\",\"doi\":\"10.1186/s13635-024-00173-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, a robust steganographic algorithm that achieves errorless robustness against JPEG recompression has been proposed. The method employs a lattice embedding scheme and utilizes the syndrome-trellis code (STC) for practical embedding. However, we have noticed that errorless robust embedding with STC may encounter failures due to modifications on wet coefficients, especially when a high quality factor is used by the compression channel. To solve this problem, we have discovered that using steganographic polar code (SPC) for embedding has better performance in avoiding modifications on wet coefficients. In this paper, we conduct theoretical analysis to prove the better performance of SPC in wet paper embedding. We establish the condition of avoiding modifications on wet coefficients, followed by presenting a recursive calculation method for determining the distribution of columns in the generator matrix of SPC. The findings reveal that SPC can avoid modifications on wet coefficients under a larger number of wet coefficients compared with STC, and therefore we propose a better errorless robust embedding method employing SPC. The experimental results demonstrate that under close security performance, the proposed method achieves a higher success rate compared with embedding with STC. Specifically, when the quality factor of the compressor is 95 and the payload size is 0.4 bpnzac, our method achieves a success rate of 99.85%, surpassing the 91.95% success rate of the embedding with STC.\",\"PeriodicalId\":46070,\"journal\":{\"name\":\"EURASIP Journal on Information Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Information Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13635-024-00173-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13635-024-00173-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Errorless robust JPEG steganography using steganographic polar codes
Recently, a robust steganographic algorithm that achieves errorless robustness against JPEG recompression has been proposed. The method employs a lattice embedding scheme and utilizes the syndrome-trellis code (STC) for practical embedding. However, we have noticed that errorless robust embedding with STC may encounter failures due to modifications on wet coefficients, especially when a high quality factor is used by the compression channel. To solve this problem, we have discovered that using steganographic polar code (SPC) for embedding has better performance in avoiding modifications on wet coefficients. In this paper, we conduct theoretical analysis to prove the better performance of SPC in wet paper embedding. We establish the condition of avoiding modifications on wet coefficients, followed by presenting a recursive calculation method for determining the distribution of columns in the generator matrix of SPC. The findings reveal that SPC can avoid modifications on wet coefficients under a larger number of wet coefficients compared with STC, and therefore we propose a better errorless robust embedding method employing SPC. The experimental results demonstrate that under close security performance, the proposed method achieves a higher success rate compared with embedding with STC. Specifically, when the quality factor of the compressor is 95 and the payload size is 0.4 bpnzac, our method achieves a success rate of 99.85%, surpassing the 91.95% success rate of the embedding with STC.
期刊介绍:
The overall goal of the EURASIP Journal on Information Security, sponsored by the European Association for Signal Processing (EURASIP), is to bring together researchers and practitioners dealing with the general field of information security, with a particular emphasis on the use of signal processing tools in adversarial environments. As such, it addresses all works whereby security is achieved through a combination of techniques from cryptography, computer security, machine learning and multimedia signal processing. Application domains lie, for example, in secure storage, retrieval and tracking of multimedia data, secure outsourcing of computations, forgery detection of multimedia data, or secure use of biometrics. The journal also welcomes survey papers that give the reader a gentle introduction to one of the topics covered as well as papers that report large-scale experimental evaluations of existing techniques. Pure cryptographic papers are outside the scope of the journal. Topics relevant to the journal include, but are not limited to: • Multimedia security primitives (such digital watermarking, perceptual hashing, multimedia authentictaion) • Steganography and Steganalysis • Fingerprinting and traitor tracing • Joint signal processing and encryption, signal processing in the encrypted domain, applied cryptography • Biometrics (fusion, multimodal biometrics, protocols, security issues) • Digital forensics • Multimedia signal processing approaches tailored towards adversarial environments • Machine learning in adversarial environments • Digital Rights Management • Network security (such as physical layer security, intrusion detection) • Hardware security, Physical Unclonable Functions • Privacy-Enhancing Technologies for multimedia data • Private data analysis, security in outsourced computations, cloud privacy