{"title":"挖掘数字身份洞察力:利用 NLP 进行专利分析","authors":"Matthew Comb, Andrew Martin","doi":"10.1186/s13635-024-00172-5","DOIUrl":null,"url":null,"abstract":"The field of digital identity innovation has grown significantly over the last 30 years, with over 6000 technology patents registered worldwide. However, many questions remain about who controls and owns our digital identity and intellectual property and, ultimately, where the future of digital identity is heading. To investigate this further, this research mines digital identity patents and explores core themes such as identity, systems, privacy, security, and emerging fields like blockchain, financial transactions, and biometric technologies, utilizing natural language processing (NLP) methods including part-of-speech (POS) tagging, clustering, topic classification, noise reduction, and lemmatisation techniques. Finally, the research employs graph modelling and statistical analysis to discern inherent trends and forecast future developments. The findings significantly contribute to the digital identity landscape, identifying key players, emerging trends, and technological progress. This research serves as a valuable resource for academia and industry stakeholders, aiding in strategic decision-making and investment in emerging technologies and facilitating navigation through the dynamic realm of digital identity technologies.","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":"3 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mining digital identity insights: patent analysis using NLP\",\"authors\":\"Matthew Comb, Andrew Martin\",\"doi\":\"10.1186/s13635-024-00172-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The field of digital identity innovation has grown significantly over the last 30 years, with over 6000 technology patents registered worldwide. However, many questions remain about who controls and owns our digital identity and intellectual property and, ultimately, where the future of digital identity is heading. To investigate this further, this research mines digital identity patents and explores core themes such as identity, systems, privacy, security, and emerging fields like blockchain, financial transactions, and biometric technologies, utilizing natural language processing (NLP) methods including part-of-speech (POS) tagging, clustering, topic classification, noise reduction, and lemmatisation techniques. Finally, the research employs graph modelling and statistical analysis to discern inherent trends and forecast future developments. The findings significantly contribute to the digital identity landscape, identifying key players, emerging trends, and technological progress. This research serves as a valuable resource for academia and industry stakeholders, aiding in strategic decision-making and investment in emerging technologies and facilitating navigation through the dynamic realm of digital identity technologies.\",\"PeriodicalId\":46070,\"journal\":{\"name\":\"EURASIP Journal on Information Security\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Information Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13635-024-00172-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13635-024-00172-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Mining digital identity insights: patent analysis using NLP
The field of digital identity innovation has grown significantly over the last 30 years, with over 6000 technology patents registered worldwide. However, many questions remain about who controls and owns our digital identity and intellectual property and, ultimately, where the future of digital identity is heading. To investigate this further, this research mines digital identity patents and explores core themes such as identity, systems, privacy, security, and emerging fields like blockchain, financial transactions, and biometric technologies, utilizing natural language processing (NLP) methods including part-of-speech (POS) tagging, clustering, topic classification, noise reduction, and lemmatisation techniques. Finally, the research employs graph modelling and statistical analysis to discern inherent trends and forecast future developments. The findings significantly contribute to the digital identity landscape, identifying key players, emerging trends, and technological progress. This research serves as a valuable resource for academia and industry stakeholders, aiding in strategic decision-making and investment in emerging technologies and facilitating navigation through the dynamic realm of digital identity technologies.
期刊介绍:
The overall goal of the EURASIP Journal on Information Security, sponsored by the European Association for Signal Processing (EURASIP), is to bring together researchers and practitioners dealing with the general field of information security, with a particular emphasis on the use of signal processing tools in adversarial environments. As such, it addresses all works whereby security is achieved through a combination of techniques from cryptography, computer security, machine learning and multimedia signal processing. Application domains lie, for example, in secure storage, retrieval and tracking of multimedia data, secure outsourcing of computations, forgery detection of multimedia data, or secure use of biometrics. The journal also welcomes survey papers that give the reader a gentle introduction to one of the topics covered as well as papers that report large-scale experimental evaluations of existing techniques. Pure cryptographic papers are outside the scope of the journal. Topics relevant to the journal include, but are not limited to: • Multimedia security primitives (such digital watermarking, perceptual hashing, multimedia authentictaion) • Steganography and Steganalysis • Fingerprinting and traitor tracing • Joint signal processing and encryption, signal processing in the encrypted domain, applied cryptography • Biometrics (fusion, multimodal biometrics, protocols, security issues) • Digital forensics • Multimedia signal processing approaches tailored towards adversarial environments • Machine learning in adversarial environments • Digital Rights Management • Network security (such as physical layer security, intrusion detection) • Hardware security, Physical Unclonable Functions • Privacy-Enhancing Technologies for multimedia data • Private data analysis, security in outsourced computations, cloud privacy