通过成对比较进行在线排名汇总的随机迭代法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-06-21 DOI:10.1007/s10543-024-01024-x
Benjamin Jarman, Lara Kassab, Deanna Needell, Alexander Sietsema
{"title":"通过成对比较进行在线排名汇总的随机迭代法","authors":"Benjamin Jarman, Lara Kassab, Deanna Needell, Alexander Sietsema","doi":"10.1007/s10543-024-01024-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider large-scale ranking problems where one is given a set of (possibly non-redundant) pairwise comparisons and the underlying ranking explained by those comparisons is desired. We show that stochastic gradient descent approaches can be leveraged to offer convergence to a solution that reveals the underlying ranking while requiring low-memory operations. We introduce several variations of this approach that offer a tradeoff in speed and convergence when the pairwise comparisons are noisy (i.e., some comparisons do not respect the underlying ranking). We prove theoretical results for convergence almost surely and study several regimes including those with full observations, partial observations, and noisy observations. Our empirical results give insights into the number of observations required as well as how much noise in those measurements can be tolerated.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic iterative methods for online rank aggregation from pairwise comparisons\",\"authors\":\"Benjamin Jarman, Lara Kassab, Deanna Needell, Alexander Sietsema\",\"doi\":\"10.1007/s10543-024-01024-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider large-scale ranking problems where one is given a set of (possibly non-redundant) pairwise comparisons and the underlying ranking explained by those comparisons is desired. We show that stochastic gradient descent approaches can be leveraged to offer convergence to a solution that reveals the underlying ranking while requiring low-memory operations. We introduce several variations of this approach that offer a tradeoff in speed and convergence when the pairwise comparisons are noisy (i.e., some comparisons do not respect the underlying ranking). We prove theoretical results for convergence almost surely and study several regimes including those with full observations, partial observations, and noisy observations. Our empirical results give insights into the number of observations required as well as how much noise in those measurements can be tolerated.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10543-024-01024-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10543-024-01024-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了大规模排序问题,即给定一组(可能是非冗余的)成对比较,并希望得到这些比较所解释的基本排序。我们表明,可以利用随机梯度下降方法来提供收敛到揭示基本排名的解决方案,同时只需要低内存操作。我们介绍了这种方法的几种变体,当成对比较存在噪声时(即某些比较不尊重基本排序),这些变体可以在速度和收敛性之间做出权衡。我们证明了几乎肯定收敛的理论结果,并研究了几种情况,包括完全观察、部分观察和噪声观察。我们的经验结果让我们深入了解了所需的观察次数以及这些测量中可容忍的噪声程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stochastic iterative methods for online rank aggregation from pairwise comparisons

In this paper, we consider large-scale ranking problems where one is given a set of (possibly non-redundant) pairwise comparisons and the underlying ranking explained by those comparisons is desired. We show that stochastic gradient descent approaches can be leveraged to offer convergence to a solution that reveals the underlying ranking while requiring low-memory operations. We introduce several variations of this approach that offer a tradeoff in speed and convergence when the pairwise comparisons are noisy (i.e., some comparisons do not respect the underlying ranking). We prove theoretical results for convergence almost surely and study several regimes including those with full observations, partial observations, and noisy observations. Our empirical results give insights into the number of observations required as well as how much noise in those measurements can be tolerated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1