{"title":"为运动交互分析扩大时间地理计算的规模","authors":"Yifei Liu, Sarah Battersby, Somayeh Dodge","doi":"10.1111/tgis.13205","DOIUrl":null,"url":null,"abstract":"Understanding interactions through movement provides critical insights into urban dynamic, social networks, and wildlife behaviors. With widespread tracking of humans, vehicles, and animals, there is an abundance of large and high‐resolution movement data sets. However, there is a gap in efficient GIS tools for analyzing and contextualizing movement patterns using large movement datasets. In particular, tracing space–time interactions among a group of moving individuals is a computationally demanding task, which would uncover insights into collective behaviors across systems. This article develops a Spark‐based geo‐computational framework through the integration of Esri's ArcGIS GeoAnalytics Engine and Python to optimize the computation of time geography for scaling up movement interaction analysis. The computational framework is then tested using a case study on migratory turkey vultures with over 2 million GPS tracking points across 20 years. The outcomes indicate a drastic reduction in interaction detection time from 14 days to 6 hours, demonstrating a remarkable increase in computational efficiency. This work contributes to advancing GIS computational capabilities in movement analysis, highlighting the potential of GeoAnalytics Engine in processing large spatiotemporal datasets.","PeriodicalId":47842,"journal":{"name":"Transactions in GIS","volume":"67 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling up time–geographic computation for movement interaction analysis\",\"authors\":\"Yifei Liu, Sarah Battersby, Somayeh Dodge\",\"doi\":\"10.1111/tgis.13205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding interactions through movement provides critical insights into urban dynamic, social networks, and wildlife behaviors. With widespread tracking of humans, vehicles, and animals, there is an abundance of large and high‐resolution movement data sets. However, there is a gap in efficient GIS tools for analyzing and contextualizing movement patterns using large movement datasets. In particular, tracing space–time interactions among a group of moving individuals is a computationally demanding task, which would uncover insights into collective behaviors across systems. This article develops a Spark‐based geo‐computational framework through the integration of Esri's ArcGIS GeoAnalytics Engine and Python to optimize the computation of time geography for scaling up movement interaction analysis. The computational framework is then tested using a case study on migratory turkey vultures with over 2 million GPS tracking points across 20 years. The outcomes indicate a drastic reduction in interaction detection time from 14 days to 6 hours, demonstrating a remarkable increase in computational efficiency. This work contributes to advancing GIS computational capabilities in movement analysis, highlighting the potential of GeoAnalytics Engine in processing large spatiotemporal datasets.\",\"PeriodicalId\":47842,\"journal\":{\"name\":\"Transactions in GIS\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions in GIS\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/tgis.13205\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions in GIS","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/tgis.13205","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY","Score":null,"Total":0}
Scaling up time–geographic computation for movement interaction analysis
Understanding interactions through movement provides critical insights into urban dynamic, social networks, and wildlife behaviors. With widespread tracking of humans, vehicles, and animals, there is an abundance of large and high‐resolution movement data sets. However, there is a gap in efficient GIS tools for analyzing and contextualizing movement patterns using large movement datasets. In particular, tracing space–time interactions among a group of moving individuals is a computationally demanding task, which would uncover insights into collective behaviors across systems. This article develops a Spark‐based geo‐computational framework through the integration of Esri's ArcGIS GeoAnalytics Engine and Python to optimize the computation of time geography for scaling up movement interaction analysis. The computational framework is then tested using a case study on migratory turkey vultures with over 2 million GPS tracking points across 20 years. The outcomes indicate a drastic reduction in interaction detection time from 14 days to 6 hours, demonstrating a remarkable increase in computational efficiency. This work contributes to advancing GIS computational capabilities in movement analysis, highlighting the potential of GeoAnalytics Engine in processing large spatiotemporal datasets.
期刊介绍:
Transactions in GIS is an international journal which provides a forum for high quality, original research articles, review articles, short notes and book reviews that focus on: - practical and theoretical issues influencing the development of GIS - the collection, analysis, modelling, interpretation and display of spatial data within GIS - the connections between GIS and related technologies - new GIS applications which help to solve problems affecting the natural or built environments, or business