为运动交互分析扩大时间地理计算的规模

IF 2.1 3区 地球科学 Q2 GEOGRAPHY Transactions in GIS Pub Date : 2024-06-26 DOI:10.1111/tgis.13205
Yifei Liu, Sarah Battersby, Somayeh Dodge
{"title":"为运动交互分析扩大时间地理计算的规模","authors":"Yifei Liu, Sarah Battersby, Somayeh Dodge","doi":"10.1111/tgis.13205","DOIUrl":null,"url":null,"abstract":"Understanding interactions through movement provides critical insights into urban dynamic, social networks, and wildlife behaviors. With widespread tracking of humans, vehicles, and animals, there is an abundance of large and high‐resolution movement data sets. However, there is a gap in efficient GIS tools for analyzing and contextualizing movement patterns using large movement datasets. In particular, tracing space–time interactions among a group of moving individuals is a computationally demanding task, which would uncover insights into collective behaviors across systems. This article develops a Spark‐based geo‐computational framework through the integration of Esri's ArcGIS GeoAnalytics Engine and Python to optimize the computation of time geography for scaling up movement interaction analysis. The computational framework is then tested using a case study on migratory turkey vultures with over 2 million GPS tracking points across 20 years. The outcomes indicate a drastic reduction in interaction detection time from 14 days to 6 hours, demonstrating a remarkable increase in computational efficiency. This work contributes to advancing GIS computational capabilities in movement analysis, highlighting the potential of GeoAnalytics Engine in processing large spatiotemporal datasets.","PeriodicalId":47842,"journal":{"name":"Transactions in GIS","volume":"67 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling up time–geographic computation for movement interaction analysis\",\"authors\":\"Yifei Liu, Sarah Battersby, Somayeh Dodge\",\"doi\":\"10.1111/tgis.13205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding interactions through movement provides critical insights into urban dynamic, social networks, and wildlife behaviors. With widespread tracking of humans, vehicles, and animals, there is an abundance of large and high‐resolution movement data sets. However, there is a gap in efficient GIS tools for analyzing and contextualizing movement patterns using large movement datasets. In particular, tracing space–time interactions among a group of moving individuals is a computationally demanding task, which would uncover insights into collective behaviors across systems. This article develops a Spark‐based geo‐computational framework through the integration of Esri's ArcGIS GeoAnalytics Engine and Python to optimize the computation of time geography for scaling up movement interaction analysis. The computational framework is then tested using a case study on migratory turkey vultures with over 2 million GPS tracking points across 20 years. The outcomes indicate a drastic reduction in interaction detection time from 14 days to 6 hours, demonstrating a remarkable increase in computational efficiency. This work contributes to advancing GIS computational capabilities in movement analysis, highlighting the potential of GeoAnalytics Engine in processing large spatiotemporal datasets.\",\"PeriodicalId\":47842,\"journal\":{\"name\":\"Transactions in GIS\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions in GIS\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/tgis.13205\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions in GIS","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/tgis.13205","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

通过运动来了解互动,可以为城市动态、社会网络和野生动物行为提供重要的洞察力。随着对人类、车辆和动物的广泛追踪,出现了大量高分辨率的大型移动数据集。然而,在利用大型运动数据集分析运动模式并将其情景化的高效 GIS 工具方面还存在差距。特别是,追踪一群移动个体之间的时空互动是一项计算要求极高的任务,而这将有助于深入了解跨系统的集体行为。本文通过整合 Esri 的 ArcGIS GeoAnalytics Engine 和 Python,开发了一个基于 Spark 的地理计算框架,以优化时间地理的计算,从而扩大运动交互分析的规模。然后,利用 20 年间超过 200 万个 GPS 跟踪点对迁徙火鸡秃鹫进行案例研究,对计算框架进行测试。结果表明,交互作用检测时间从 14 天大幅缩短到 6 小时,显示了计算效率的显著提高。这项工作有助于提高地理信息系统在运动分析方面的计算能力,凸显了 GeoAnalytics Engine 在处理大型时空数据集方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scaling up time–geographic computation for movement interaction analysis
Understanding interactions through movement provides critical insights into urban dynamic, social networks, and wildlife behaviors. With widespread tracking of humans, vehicles, and animals, there is an abundance of large and high‐resolution movement data sets. However, there is a gap in efficient GIS tools for analyzing and contextualizing movement patterns using large movement datasets. In particular, tracing space–time interactions among a group of moving individuals is a computationally demanding task, which would uncover insights into collective behaviors across systems. This article develops a Spark‐based geo‐computational framework through the integration of Esri's ArcGIS GeoAnalytics Engine and Python to optimize the computation of time geography for scaling up movement interaction analysis. The computational framework is then tested using a case study on migratory turkey vultures with over 2 million GPS tracking points across 20 years. The outcomes indicate a drastic reduction in interaction detection time from 14 days to 6 hours, demonstrating a remarkable increase in computational efficiency. This work contributes to advancing GIS computational capabilities in movement analysis, highlighting the potential of GeoAnalytics Engine in processing large spatiotemporal datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions in GIS
Transactions in GIS GEOGRAPHY-
CiteScore
4.60
自引率
8.30%
发文量
116
期刊介绍: Transactions in GIS is an international journal which provides a forum for high quality, original research articles, review articles, short notes and book reviews that focus on: - practical and theoretical issues influencing the development of GIS - the collection, analysis, modelling, interpretation and display of spatial data within GIS - the connections between GIS and related technologies - new GIS applications which help to solve problems affecting the natural or built environments, or business
期刊最新文献
Knowledge‐Guided Automated Cartographic Generalization Process Construction: A Case Study Based on Map Analysis of Public Maps of China City Influence Network: Mining and Analyzing the Influence of Chinese Cities Based on Social Media PyGRF: An Improved Python Geographical Random Forest Model and Case Studies in Public Health and Natural Disasters Neural Sensing: Toward a New Approach to Understanding Emotional Responses to Place Construction of Earth Observation Knowledge Hub Based on Knowledge Graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1