通过溯源迭代法实现大规模多输入多输出系统的低复杂度信号检测

IF 1.9 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Journal of Systems Engineering and Electronics Pub Date : 2024-07-04 DOI:10.23919/jsee.2024.000061
A. Khoso Imran, Xiaofei Zhang, Hayee Shaikh Abdul, A. Khoso Ihsan, Ahmed Dayo Zaheer
{"title":"通过溯源迭代法实现大规模多输入多输出系统的低复杂度信号检测","authors":"A. Khoso Imran, Xiaofei Zhang, Hayee Shaikh Abdul, A. Khoso Ihsan, Ahmed Dayo Zaheer","doi":"10.23919/jsee.2024.000061","DOIUrl":null,"url":null,"abstract":"Linear minimum mean square error (MMSE) detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output (MIMO) systems but inevitably involves complicated matrix inversion, which entails high complexity. To avoid the exact matrix inversion, a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed. By combining the advantages of both the explicit and the implicit matrix inversion, this paper introduces a new low-complexity signal detection algorithm. Firstly, the relationship between implicit and explicit techniques is analyzed. Then, an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems. The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration. However, its complexity is still high for higher iterations. Thus, it is applied only for first two iterations. For subsequent iterations, we propose a novel trace iterative method (TIM) based low-complexity algorithm, which has significantly lower complexity than higher Newton iterations. Convergence guarantees of the proposed detector are also provided. Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"23 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Complexity Signal Detection for Massive MIMO Systems via Trace Iterative Method\",\"authors\":\"A. Khoso Imran, Xiaofei Zhang, Hayee Shaikh Abdul, A. Khoso Ihsan, Ahmed Dayo Zaheer\",\"doi\":\"10.23919/jsee.2024.000061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear minimum mean square error (MMSE) detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output (MIMO) systems but inevitably involves complicated matrix inversion, which entails high complexity. To avoid the exact matrix inversion, a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed. By combining the advantages of both the explicit and the implicit matrix inversion, this paper introduces a new low-complexity signal detection algorithm. Firstly, the relationship between implicit and explicit techniques is analyzed. Then, an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems. The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration. However, its complexity is still high for higher iterations. Thus, it is applied only for first two iterations. For subsequent iterations, we propose a novel trace iterative method (TIM) based low-complexity algorithm, which has significantly lower complexity than higher Newton iterations. Convergence guarantees of the proposed detector are also provided. Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.\",\"PeriodicalId\":50030,\"journal\":{\"name\":\"Journal of Systems Engineering and Electronics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Engineering and Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.23919/jsee.2024.000061\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Engineering and Electronics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/jsee.2024.000061","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

线性最小均方误差(MMSE)检测已被证明可为大规模多输入多输出(MIMO)系统实现接近最优的性能,但不可避免地涉及复杂的矩阵反演,这带来了很高的复杂性。为了避免精确矩阵反演,人们提出了大量基于隐式和显式近似矩阵反演的检测方法。本文结合显式和隐式矩阵反演的优点,提出了一种新的低复杂度信号检测算法。首先,分析了隐式和显式技术之间的关系。然后,介绍了一种增强型牛顿迭代法,以实现大规模 MIMO 上行系统的近似 MMSE 检测。所提出的改进牛顿迭代法大大降低了传统牛顿迭代法的复杂性。然而,在迭代次数较多的情况下,其复杂度仍然很高。因此,它只适用于头两次迭代。对于随后的迭代,我们提出了一种基于痕量迭代法(TIM)的新型低复杂度算法,其复杂度大大低于牛顿迭代法。我们还提供了所提检测器的收敛性保证。数值模拟验证了与最近报道的迭代检测器相比,所提出的检测器性能有了显著提高,达到了接近 MMSE 的性能,同时在拥有数百根天线的系统中保持了低复杂度优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-Complexity Signal Detection for Massive MIMO Systems via Trace Iterative Method
Linear minimum mean square error (MMSE) detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output (MIMO) systems but inevitably involves complicated matrix inversion, which entails high complexity. To avoid the exact matrix inversion, a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed. By combining the advantages of both the explicit and the implicit matrix inversion, this paper introduces a new low-complexity signal detection algorithm. Firstly, the relationship between implicit and explicit techniques is analyzed. Then, an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems. The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration. However, its complexity is still high for higher iterations. Thus, it is applied only for first two iterations. For subsequent iterations, we propose a novel trace iterative method (TIM) based low-complexity algorithm, which has significantly lower complexity than higher Newton iterations. Convergence guarantees of the proposed detector are also provided. Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Systems Engineering and Electronics
Journal of Systems Engineering and Electronics 工程技术-工程:电子与电气
CiteScore
4.10
自引率
14.30%
发文量
131
审稿时长
7.5 months
期刊介绍: Information not localized
期刊最新文献
System Error Iterative Identification for Underwater Positioning Based on Spectral Clustering Cloud Control for IIoT in a Cloud-Edge Environment Multi-Network-Region Traffic Cooperative Scheduling in Large-Scale LEO Satellite Networks Quantitative Method for Calculating Spatial Release Region for Laser-Guided Bomb Early Warning of Core Network Capacity in Space-Terrestrial Integrated Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1