利用基于递归 Ransac 的自适应出生估计法跟踪急剧移动目标的多模型 PHD 滤波器

IF 1.9 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Journal of Systems Engineering and Electronics Pub Date : 2023-11-22 DOI:10.23919/jsee.2023.000134
Changwen Ding, Di Zhou, Xinguang Zou, Runle Du, Jiaqi Liu
{"title":"利用基于递归 Ransac 的自适应出生估计法跟踪急剧移动目标的多模型 PHD 滤波器","authors":"Changwen Ding, Di Zhou, Xinguang Zou, Runle Du, Jiaqi Liu","doi":"10.23919/jsee.2023.000134","DOIUrl":null,"url":null,"abstract":"An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles. The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper, we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets' information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"23 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple Model PHD filter for Tracking Sharply Maneuvering Targets Using Recursive Ransac Based Adaptive Birth Estimation\",\"authors\":\"Changwen Ding, Di Zhou, Xinguang Zou, Runle Du, Jiaqi Liu\",\"doi\":\"10.23919/jsee.2023.000134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles. The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper, we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets' information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.\",\"PeriodicalId\":50030,\"journal\":{\"name\":\"Journal of Systems Engineering and Electronics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Engineering and Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.23919/jsee.2023.000134\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Engineering and Electronics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/jsee.2023.000134","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种在不预先知道新目标诞生的情况下跟踪多个急剧机动目标的算法。这些目标能够在短时间内实现急剧机动,如无人机和敏捷导弹。概率假设密度(PHD)滤波器只传播完整目标后验的一阶统计矩,已被证明是多目标跟踪问题的高效计算解决方案。然而,标准的 PHD 滤波器是在单一动态模型上运行的,需要关于目标出生分布的先验信息,这导致了实际应用中的许多限制。在本文中,我们引入了一个非零均值、白噪声转向率动态模型,并将跃迁马尔可夫系统推广到多目标情况下,以适应急剧的机动动态。此外,为了自适应地估计新生目标的信息,我们提出了一种基于递归随机抽样共识(RANSAC)算法的测量驱动方法。仿真结果表明,所提出的方法在利用自适应出生估计跟踪多个急剧机动目标方面取得了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple Model PHD filter for Tracking Sharply Maneuvering Targets Using Recursive Ransac Based Adaptive Birth Estimation
An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles. The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper, we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets' information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Systems Engineering and Electronics
Journal of Systems Engineering and Electronics 工程技术-工程:电子与电气
CiteScore
4.10
自引率
14.30%
发文量
131
审稿时长
7.5 months
期刊介绍: Information not localized
期刊最新文献
System Error Iterative Identification for Underwater Positioning Based on Spectral Clustering Cloud Control for IIoT in a Cloud-Edge Environment Multi-Network-Region Traffic Cooperative Scheduling in Large-Scale LEO Satellite Networks Quantitative Method for Calculating Spatial Release Region for Laser-Guided Bomb Early Warning of Core Network Capacity in Space-Terrestrial Integrated Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1