实现用于发电的高热电性能柔性独立式 PEDOT:PSS/Bi0.5Sb1.5Te3 复合薄膜

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Rare Metals Pub Date : 2024-07-04 DOI:10.1007/s12598-024-02860-0
Li Sun, Dong-Wei Ao, Junphil Hwang, Qin Liu, En-Si Cao, Bing Sun
{"title":"实现用于发电的高热电性能柔性独立式 PEDOT:PSS/Bi0.5Sb1.5Te3 复合薄膜","authors":"Li Sun,&nbsp;Dong-Wei Ao,&nbsp;Junphil Hwang,&nbsp;Qin Liu,&nbsp;En-Si Cao,&nbsp;Bing Sun","doi":"10.1007/s12598-024-02860-0","DOIUrl":null,"url":null,"abstract":"<div><p>Flexible thermoelectrics provide a distinct solution for developing sustainable and portable power supplies. Inorganic/organic material compositing is an effective strategy to induce a significant enhancement of thermoelectric (TE) performance. However, the poor electrical performance of inorganic/organic material is attributed to the poor carrier transport between organic/inorganic interfaces induced by the low contribution of composited inorganic materials. Herein, we prepared a high room temperature figure-of-merit (<i>ZT</i>) value of ~ 0.19 and high bending resistance (surviving 1200 bending cycles at the bending radius of 16.5 mm) of p-type poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> free-standing composite film via a facile vacuum-assisted filtration approach. Compositing Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> nano-spherical particles into PEDOT:PSS results in the optimized interfacial contact and carrier concentration, leading to a high Seebeck coefficient of ~ 43.79 μV·K<sup>−1</sup>. Accordingly, a high-power factor of ~ 1.52 μW·cm<sup>−1</sup>·K<sup>−2</sup> is achieved in the PEDOT:PSS/Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> composite film at room temperature. In addition, the PEDOT:PSS/Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> interfaces with phase boundaries, nanograins and point defects could further decrease the thermal conductivity to ~ 0.20 W·m<sup>−1</sup>·K<sup>−1</sup>, leading to a high <i>ZT</i> value. Furthermore, a 6-leg free-standing film device was assembled, which provided an output power of 44.94 nW. This study demonstrates that free-standing organic/inorganic composite films are effective power sources for wearable electronic products.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realizing high thermoelectric performance flexible free-standing PEDOT:PSS/Bi0.5Sb1.5Te3 composite films for power generation\",\"authors\":\"Li Sun,&nbsp;Dong-Wei Ao,&nbsp;Junphil Hwang,&nbsp;Qin Liu,&nbsp;En-Si Cao,&nbsp;Bing Sun\",\"doi\":\"10.1007/s12598-024-02860-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Flexible thermoelectrics provide a distinct solution for developing sustainable and portable power supplies. Inorganic/organic material compositing is an effective strategy to induce a significant enhancement of thermoelectric (TE) performance. However, the poor electrical performance of inorganic/organic material is attributed to the poor carrier transport between organic/inorganic interfaces induced by the low contribution of composited inorganic materials. Herein, we prepared a high room temperature figure-of-merit (<i>ZT</i>) value of ~ 0.19 and high bending resistance (surviving 1200 bending cycles at the bending radius of 16.5 mm) of p-type poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> free-standing composite film via a facile vacuum-assisted filtration approach. Compositing Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> nano-spherical particles into PEDOT:PSS results in the optimized interfacial contact and carrier concentration, leading to a high Seebeck coefficient of ~ 43.79 μV·K<sup>−1</sup>. Accordingly, a high-power factor of ~ 1.52 μW·cm<sup>−1</sup>·K<sup>−2</sup> is achieved in the PEDOT:PSS/Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> composite film at room temperature. In addition, the PEDOT:PSS/Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> interfaces with phase boundaries, nanograins and point defects could further decrease the thermal conductivity to ~ 0.20 W·m<sup>−1</sup>·K<sup>−1</sup>, leading to a high <i>ZT</i> value. Furthermore, a 6-leg free-standing film device was assembled, which provided an output power of 44.94 nW. This study demonstrates that free-standing organic/inorganic composite films are effective power sources for wearable electronic products.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12598-024-02860-0\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-02860-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

柔性热电为开发可持续的便携式电源提供了独特的解决方案。无机/有机材料复合是显著提高热电(TE)性能的有效策略。然而,无机/有机材料的电性能较差,原因在于复合无机材料的贡献率较低,导致有机/无机界面之间的载流子传输较差。在此,我们通过一种简便的真空辅助过滤方法制备出了室温等效系数(ZT)值约为 0.19 的高抗弯性(在弯曲半径为 16.5 毫米的条件下可承受 1200 次弯曲循环)p 型聚(3,4-亚乙二氧基噻吩):聚(4-苯乙烯磺酸盐)(PEDOT:PSS)/Bi0.5Sb1.5Te3 独立复合膜。将 Bi0.5Sb1.5Te3 纳米球形颗粒复合到 PEDOT:PSS 中可优化界面接触和载流子浓度,从而获得约 43.79 μV-K-1 的高塞贝克系数。因此,在室温下,PEDOT:PSS/Bi0.5Sb1.5Te3 复合薄膜的功率因数达到了约 1.52 μW-cm-1-K-2。此外,带有相界、纳米晶粒和点缺陷的 PEDOT:PSS/Bi0.5Sb1.5Te3 界面可进一步将热导率降至 ~ 0.20 W-m-1-K-1,从而实现较高的 ZT 值。此外,还组装了一个 6 脚独立式薄膜器件,其输出功率为 44.94 nW。这项研究表明,独立式有机/无机复合薄膜是可穿戴电子产品的有效电源。 图文摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Realizing high thermoelectric performance flexible free-standing PEDOT:PSS/Bi0.5Sb1.5Te3 composite films for power generation

Flexible thermoelectrics provide a distinct solution for developing sustainable and portable power supplies. Inorganic/organic material compositing is an effective strategy to induce a significant enhancement of thermoelectric (TE) performance. However, the poor electrical performance of inorganic/organic material is attributed to the poor carrier transport between organic/inorganic interfaces induced by the low contribution of composited inorganic materials. Herein, we prepared a high room temperature figure-of-merit (ZT) value of ~ 0.19 and high bending resistance (surviving 1200 bending cycles at the bending radius of 16.5 mm) of p-type poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/Bi0.5Sb1.5Te3 free-standing composite film via a facile vacuum-assisted filtration approach. Compositing Bi0.5Sb1.5Te3 nano-spherical particles into PEDOT:PSS results in the optimized interfacial contact and carrier concentration, leading to a high Seebeck coefficient of ~ 43.79 μV·K−1. Accordingly, a high-power factor of ~ 1.52 μW·cm−1·K−2 is achieved in the PEDOT:PSS/Bi0.5Sb1.5Te3 composite film at room temperature. In addition, the PEDOT:PSS/Bi0.5Sb1.5Te3 interfaces with phase boundaries, nanograins and point defects could further decrease the thermal conductivity to ~ 0.20 W·m−1·K−1, leading to a high ZT value. Furthermore, a 6-leg free-standing film device was assembled, which provided an output power of 44.94 nW. This study demonstrates that free-standing organic/inorganic composite films are effective power sources for wearable electronic products.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
期刊最新文献
Synergistic Cu single-atoms and clusters on tubular carbon nitride for efficient photocatalytic performances Enhanced thermoelectric performance in p-type AgBiSe2 through carrier concentration optimization and valence band modification Ultrathin BiOCl crystals grown in highly disordered vapor micro-turbulence for deep ultraviolet photodetectors Recent advances in dual-atom catalysts for energy catalysis Self-supporting sea urchin-like Ni-Mo nano-materials as asymmetric electrodes for overall water splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1