Manal E. Alkahtani, Siyuan Sun, Christopher A.R. Chapman, Simon Gaisford, Mine Orlu, Moe Elbadawi, Abdul W. Basit
{"title":"可编程药物释放的 3D 打印电响应系统","authors":"Manal E. Alkahtani, Siyuan Sun, Christopher A.R. Chapman, Simon Gaisford, Mine Orlu, Moe Elbadawi, Abdul W. Basit","doi":"10.1016/j.mtadv.2024.100509","DOIUrl":null,"url":null,"abstract":"Precision medicine is the next frontier in pharmaceutical research, aiming to improve the safety and efficacy of therapeutics for patients. The ideal drug delivery system (DDS) should be programmable to provide real-time controlled delivery that is personalised to the patient's needs. However, little progress has been made in this domain. Herein, we combined two cutting-edge technologies, conductive polymers (CPs) and three-dimensional (3D) printing, to demonstrate their potential for achieving programmable controlled release. A DDS was formulated where the CP provided temporal control over drug release. 3D printing was used to ensure dimensional control over the design of the DDS. The CP used in this study is known to be fragile, and thus was blended with thermoplastic polyurethane (TPU) to achieve a conductive elastomer with sound mechanical properties. Rheological and mechanical analyses were performed, where it was revealed that formulation inks with a storage modulus in the order of 10–10 Pa were both extrudable and maintained their structural integrity. Physico-chemical analysis confirmed the presence of the CP functional groups in the 3D printed DDS. Cyclic voltammetry demonstrated that the DDS remained conductive for 100 stimulations. drug release was performed for 180 min at varying voltages, where a significant difference ( < 0.05) in cumulative release was observed between either ±1.0 V and passive release. Furthermore, the responsiveness of the DDS to pulsatile stimuli was tested, where it was found to rapidly respond to the voltage stimuli, consequently altering the release mechanism. The study is the first to 3D print electroactive medicines using CPs and paves the way for digitalising DDS that can be integrated into the Internet of Things (IoT) framework.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"30 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D printed electro-responsive system with programmable drug release\",\"authors\":\"Manal E. Alkahtani, Siyuan Sun, Christopher A.R. Chapman, Simon Gaisford, Mine Orlu, Moe Elbadawi, Abdul W. Basit\",\"doi\":\"10.1016/j.mtadv.2024.100509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precision medicine is the next frontier in pharmaceutical research, aiming to improve the safety and efficacy of therapeutics for patients. The ideal drug delivery system (DDS) should be programmable to provide real-time controlled delivery that is personalised to the patient's needs. However, little progress has been made in this domain. Herein, we combined two cutting-edge technologies, conductive polymers (CPs) and three-dimensional (3D) printing, to demonstrate their potential for achieving programmable controlled release. A DDS was formulated where the CP provided temporal control over drug release. 3D printing was used to ensure dimensional control over the design of the DDS. The CP used in this study is known to be fragile, and thus was blended with thermoplastic polyurethane (TPU) to achieve a conductive elastomer with sound mechanical properties. Rheological and mechanical analyses were performed, where it was revealed that formulation inks with a storage modulus in the order of 10–10 Pa were both extrudable and maintained their structural integrity. Physico-chemical analysis confirmed the presence of the CP functional groups in the 3D printed DDS. Cyclic voltammetry demonstrated that the DDS remained conductive for 100 stimulations. drug release was performed for 180 min at varying voltages, where a significant difference ( < 0.05) in cumulative release was observed between either ±1.0 V and passive release. Furthermore, the responsiveness of the DDS to pulsatile stimuli was tested, where it was found to rapidly respond to the voltage stimuli, consequently altering the release mechanism. The study is the first to 3D print electroactive medicines using CPs and paves the way for digitalising DDS that can be integrated into the Internet of Things (IoT) framework.\",\"PeriodicalId\":48495,\"journal\":{\"name\":\"Materials Today Advances\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtadv.2024.100509\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2024.100509","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
3D printed electro-responsive system with programmable drug release
Precision medicine is the next frontier in pharmaceutical research, aiming to improve the safety and efficacy of therapeutics for patients. The ideal drug delivery system (DDS) should be programmable to provide real-time controlled delivery that is personalised to the patient's needs. However, little progress has been made in this domain. Herein, we combined two cutting-edge technologies, conductive polymers (CPs) and three-dimensional (3D) printing, to demonstrate their potential for achieving programmable controlled release. A DDS was formulated where the CP provided temporal control over drug release. 3D printing was used to ensure dimensional control over the design of the DDS. The CP used in this study is known to be fragile, and thus was blended with thermoplastic polyurethane (TPU) to achieve a conductive elastomer with sound mechanical properties. Rheological and mechanical analyses were performed, where it was revealed that formulation inks with a storage modulus in the order of 10–10 Pa were both extrudable and maintained their structural integrity. Physico-chemical analysis confirmed the presence of the CP functional groups in the 3D printed DDS. Cyclic voltammetry demonstrated that the DDS remained conductive for 100 stimulations. drug release was performed for 180 min at varying voltages, where a significant difference ( < 0.05) in cumulative release was observed between either ±1.0 V and passive release. Furthermore, the responsiveness of the DDS to pulsatile stimuli was tested, where it was found to rapidly respond to the voltage stimuli, consequently altering the release mechanism. The study is the first to 3D print electroactive medicines using CPs and paves the way for digitalising DDS that can be integrated into the Internet of Things (IoT) framework.
期刊介绍:
Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.