{"title":"铁基超导体 NdFeAs(O,H)微带的制造","authors":"Atsuro Yoshikawa, Takafumi Hatano, Hiroto Hibino, Hiroya Imanaka and Hiroshi Ikuta","doi":"10.1088/1361-6668/ad5b24","DOIUrl":null,"url":null,"abstract":"NdFeAs(O,H) microstrips with line widths of about 1–5 µm were fabricated by photolithography and Ar-ion dry etching. The microstrips were fabricated under two different etching conditions: 25 min etching at a power of 20 W (long duration, low power) and 3 min etching at 100 W (short duration, high power). For both conditions, the narrowest microstrips, which were 0.9 µm in width, retained high critical temperatures of about 85% of those before microfabrication. Further, the 0.9 µm microstrip fabricated under the high-power, short-duration condition exhibited a high critical current density (Jc) of more than 4 MA cm−2 at 4 K. However, Jc of the microstrip fabricated under the low-power, long-duration condition was somewhat lower. Our analysis suggests that the edges of the microstrips were damaged more than twice as wide as those of the microstrips fabricated under the high-power, short-duration condition. This indicates that a short duration is more effective to reduce the damage than using a lower etching power.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of microstrips of iron-based superconductor NdFeAs(O,H)\",\"authors\":\"Atsuro Yoshikawa, Takafumi Hatano, Hiroto Hibino, Hiroya Imanaka and Hiroshi Ikuta\",\"doi\":\"10.1088/1361-6668/ad5b24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NdFeAs(O,H) microstrips with line widths of about 1–5 µm were fabricated by photolithography and Ar-ion dry etching. The microstrips were fabricated under two different etching conditions: 25 min etching at a power of 20 W (long duration, low power) and 3 min etching at 100 W (short duration, high power). For both conditions, the narrowest microstrips, which were 0.9 µm in width, retained high critical temperatures of about 85% of those before microfabrication. Further, the 0.9 µm microstrip fabricated under the high-power, short-duration condition exhibited a high critical current density (Jc) of more than 4 MA cm−2 at 4 K. However, Jc of the microstrip fabricated under the low-power, long-duration condition was somewhat lower. Our analysis suggests that the edges of the microstrips were damaged more than twice as wide as those of the microstrips fabricated under the high-power, short-duration condition. This indicates that a short duration is more effective to reduce the damage than using a lower etching power.\",\"PeriodicalId\":21985,\"journal\":{\"name\":\"Superconductor Science and Technology\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superconductor Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6668/ad5b24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductor Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6668/ad5b24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication of microstrips of iron-based superconductor NdFeAs(O,H)
NdFeAs(O,H) microstrips with line widths of about 1–5 µm were fabricated by photolithography and Ar-ion dry etching. The microstrips were fabricated under two different etching conditions: 25 min etching at a power of 20 W (long duration, low power) and 3 min etching at 100 W (short duration, high power). For both conditions, the narrowest microstrips, which were 0.9 µm in width, retained high critical temperatures of about 85% of those before microfabrication. Further, the 0.9 µm microstrip fabricated under the high-power, short-duration condition exhibited a high critical current density (Jc) of more than 4 MA cm−2 at 4 K. However, Jc of the microstrip fabricated under the low-power, long-duration condition was somewhat lower. Our analysis suggests that the edges of the microstrips were damaged more than twice as wide as those of the microstrips fabricated under the high-power, short-duration condition. This indicates that a short duration is more effective to reduce the damage than using a lower etching power.