Du Bowen, Wang Haiquan, Li Yuxuan, Jiejie Zhao, Yanbo Ma, Huang Runhe
{"title":"通过基于区块链的去中心化自适应聚合实现公平、稳健的联合学习","authors":"Du Bowen, Wang Haiquan, Li Yuxuan, Jiejie Zhao, Yanbo Ma, Huang Runhe","doi":"10.1145/3673656","DOIUrl":null,"url":null,"abstract":"<p>As an emerging learning paradigm, Federated Learning (FL) enables data owners to collaborate training a model while keeps data locally. However, classic FL methods are susceptible to model poisoning attacks and Byzantine failures. Despite several defense methods proposed to mitigate such concerns, it is challenging to balance adverse effects while allowing that each credible node contributes to the learning process. To this end, a Fair and Robust FL method is proposed for defense against model poisoning attack from malicious nodes, namely FRFL. FRFL can learn a high-quality model even if some nodes are malicious. In particular, we first classify each participant into three categories: training node, validation node, and blockchain node. Among these, blockchain nodes replace the central server in classic FL methods while enabling secure aggregation. Then, a fairness-aware role rotation method is proposed to periodically alter the sets of training and validation nodes in order to utilize the valuable information included in local datasets of credible nodes. Finally, a decentralized and adaptive aggregation mechanism cooperating with blockchain nodes is designed to detect and discard malicious nodes and produce a high-quality model. The results show the effectiveness of FRFL in enhancing model performance while defending against malicious nodes.</p>","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"77 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fair and Robust Federated Learning via Decentralized and Adaptive Aggregation based on Blockchain\",\"authors\":\"Du Bowen, Wang Haiquan, Li Yuxuan, Jiejie Zhao, Yanbo Ma, Huang Runhe\",\"doi\":\"10.1145/3673656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As an emerging learning paradigm, Federated Learning (FL) enables data owners to collaborate training a model while keeps data locally. However, classic FL methods are susceptible to model poisoning attacks and Byzantine failures. Despite several defense methods proposed to mitigate such concerns, it is challenging to balance adverse effects while allowing that each credible node contributes to the learning process. To this end, a Fair and Robust FL method is proposed for defense against model poisoning attack from malicious nodes, namely FRFL. FRFL can learn a high-quality model even if some nodes are malicious. In particular, we first classify each participant into three categories: training node, validation node, and blockchain node. Among these, blockchain nodes replace the central server in classic FL methods while enabling secure aggregation. Then, a fairness-aware role rotation method is proposed to periodically alter the sets of training and validation nodes in order to utilize the valuable information included in local datasets of credible nodes. Finally, a decentralized and adaptive aggregation mechanism cooperating with blockchain nodes is designed to detect and discard malicious nodes and produce a high-quality model. The results show the effectiveness of FRFL in enhancing model performance while defending against malicious nodes.</p>\",\"PeriodicalId\":50910,\"journal\":{\"name\":\"ACM Transactions on Sensor Networks\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3673656\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3673656","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Fair and Robust Federated Learning via Decentralized and Adaptive Aggregation based on Blockchain
As an emerging learning paradigm, Federated Learning (FL) enables data owners to collaborate training a model while keeps data locally. However, classic FL methods are susceptible to model poisoning attacks and Byzantine failures. Despite several defense methods proposed to mitigate such concerns, it is challenging to balance adverse effects while allowing that each credible node contributes to the learning process. To this end, a Fair and Robust FL method is proposed for defense against model poisoning attack from malicious nodes, namely FRFL. FRFL can learn a high-quality model even if some nodes are malicious. In particular, we first classify each participant into three categories: training node, validation node, and blockchain node. Among these, blockchain nodes replace the central server in classic FL methods while enabling secure aggregation. Then, a fairness-aware role rotation method is proposed to periodically alter the sets of training and validation nodes in order to utilize the valuable information included in local datasets of credible nodes. Finally, a decentralized and adaptive aggregation mechanism cooperating with blockchain nodes is designed to detect and discard malicious nodes and produce a high-quality model. The results show the effectiveness of FRFL in enhancing model performance while defending against malicious nodes.
期刊介绍:
ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.