算法决策与人工决策之间的互补性:抗生素处方案例

Michael Allan Ribers, Hannes Ullrich
{"title":"算法决策与人工决策之间的互补性:抗生素处方案例","authors":"Michael Allan Ribers, Hannes Ullrich","doi":"10.1007/s11129-024-09284-1","DOIUrl":null,"url":null,"abstract":"<p>Artificial Intelligence has the potential to improve human decisions in complex environments, but its effectiveness can remain limited if humans hold context-specific private information. Using the empirical example of antibiotic prescribing for urinary tract infections, we show that full automation of prescribing fails to improve on physician decisions. Instead, optimally delegating a share of decisions to physicians, where they possess private diagnostic information, effectively utilizes the complementarity between algorithmic and human decisions. Combining physician and algorithmic decisions can achieve a reduction in inefficient overprescribing of antibiotics by 20.3 percent.</p>","PeriodicalId":501397,"journal":{"name":"Quantitative Marketing and Economics","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complementarities between algorithmic and human decision-making: The case of antibiotic prescribing\",\"authors\":\"Michael Allan Ribers, Hannes Ullrich\",\"doi\":\"10.1007/s11129-024-09284-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Artificial Intelligence has the potential to improve human decisions in complex environments, but its effectiveness can remain limited if humans hold context-specific private information. Using the empirical example of antibiotic prescribing for urinary tract infections, we show that full automation of prescribing fails to improve on physician decisions. Instead, optimally delegating a share of decisions to physicians, where they possess private diagnostic information, effectively utilizes the complementarity between algorithmic and human decisions. Combining physician and algorithmic decisions can achieve a reduction in inefficient overprescribing of antibiotics by 20.3 percent.</p>\",\"PeriodicalId\":501397,\"journal\":{\"name\":\"Quantitative Marketing and Economics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Marketing and Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11129-024-09284-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Marketing and Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11129-024-09284-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能有可能改善人类在复杂环境中的决策,但如果人类掌握了特定情境下的私人信息,人工智能的有效性就会受到限制。通过尿路感染抗生素处方的实证例子,我们发现处方的完全自动化并不能改善医生的决策。相反,在医生掌握私人诊断信息的情况下,将一部分决策权最佳地委托给医生,可以有效地利用算法决策与人工决策之间的互补性。将医生决策与算法决策相结合,可将抗生素的低效过量处方减少 20.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Complementarities between algorithmic and human decision-making: The case of antibiotic prescribing

Artificial Intelligence has the potential to improve human decisions in complex environments, but its effectiveness can remain limited if humans hold context-specific private information. Using the empirical example of antibiotic prescribing for urinary tract infections, we show that full automation of prescribing fails to improve on physician decisions. Instead, optimally delegating a share of decisions to physicians, where they possess private diagnostic information, effectively utilizes the complementarity between algorithmic and human decisions. Combining physician and algorithmic decisions can achieve a reduction in inefficient overprescribing of antibiotics by 20.3 percent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Apparent algorithmic discrimination and real-time algorithmic learning in digital search advertising Complementarities between algorithmic and human decision-making: The case of antibiotic prescribing Watching intensity and media franchise engagement Testing a theory of strategic multi-product choice Simulated maximum likelihood estimation of the sequential search model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1