近似任意动力学的递归神经化学反应网络

Alexander Dack, Benjamin Qureshi, Thomas E. Ouldridge, Tomislav Plesa
{"title":"近似任意动力学的递归神经化学反应网络","authors":"Alexander Dack, Benjamin Qureshi, Thomas E. Ouldridge, Tomislav Plesa","doi":"arxiv-2406.03456","DOIUrl":null,"url":null,"abstract":"Many important phenomena in chemistry and biology are realized via dynamical\nfeatures such as multi-stability, oscillations, and chaos. Construction of\nnovel chemical systems with such finely-tuned dynamics is a challenging problem\ncentral to the growing field of synthetic biology. In this paper, we address\nthis problem by putting forward a molecular version of a recurrent artificial\nneural network, which we call a recurrent neural chemical reaction network\n(RNCRN). We prove that the RNCRN, with sufficiently many auxiliary chemical\nspecies and suitable fast reactions, can be systematically trained to achieve\nany dynamics. This approximation ability is shown to hold independent of the\ninitial conditions for the auxiliary species, making the RNCRN more\nexperimentally feasible. To demonstrate the results, we present a number of\nrelatively simple RNCRNs trained to display a variety of biologically-important\ndynamical features.","PeriodicalId":501325,"journal":{"name":"arXiv - QuanBio - Molecular Networks","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recurrent neural chemical reaction networks that approximate arbitrary dynamics\",\"authors\":\"Alexander Dack, Benjamin Qureshi, Thomas E. Ouldridge, Tomislav Plesa\",\"doi\":\"arxiv-2406.03456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many important phenomena in chemistry and biology are realized via dynamical\\nfeatures such as multi-stability, oscillations, and chaos. Construction of\\nnovel chemical systems with such finely-tuned dynamics is a challenging problem\\ncentral to the growing field of synthetic biology. In this paper, we address\\nthis problem by putting forward a molecular version of a recurrent artificial\\nneural network, which we call a recurrent neural chemical reaction network\\n(RNCRN). We prove that the RNCRN, with sufficiently many auxiliary chemical\\nspecies and suitable fast reactions, can be systematically trained to achieve\\nany dynamics. This approximation ability is shown to hold independent of the\\ninitial conditions for the auxiliary species, making the RNCRN more\\nexperimentally feasible. To demonstrate the results, we present a number of\\nrelatively simple RNCRNs trained to display a variety of biologically-important\\ndynamical features.\",\"PeriodicalId\":501325,\"journal\":{\"name\":\"arXiv - QuanBio - Molecular Networks\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Molecular Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.03456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Molecular Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.03456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

化学和生物学中的许多重要现象都是通过动力学特征实现的,例如多稳态、振荡和混沌。构建具有这种微调动态特性的新型化学系统是一个极具挑战性的问题,也是不断发展的合成生物学领域的核心问题。在本文中,我们提出了一种分子版本的递归人工神经网络,称之为递归神经化学反应网络(RNCRN),从而解决了这一问题。我们证明,只要有足够多的辅助化学物种和合适的快速反应,就可以对 RNCRN 进行系统训练,使其达到任何动力学水平。这种近似能力与辅助物种的初始条件无关,这使得 RNCRN 在实验上更加可行。为了证明这些结果,我们展示了一些经过训练的相对简单的 RNCRN,它们显示了各种生物学上重要的动力学特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recurrent neural chemical reaction networks that approximate arbitrary dynamics
Many important phenomena in chemistry and biology are realized via dynamical features such as multi-stability, oscillations, and chaos. Construction of novel chemical systems with such finely-tuned dynamics is a challenging problem central to the growing field of synthetic biology. In this paper, we address this problem by putting forward a molecular version of a recurrent artificial neural network, which we call a recurrent neural chemical reaction network (RNCRN). We prove that the RNCRN, with sufficiently many auxiliary chemical species and suitable fast reactions, can be systematically trained to achieve any dynamics. This approximation ability is shown to hold independent of the initial conditions for the auxiliary species, making the RNCRN more experimentally feasible. To demonstrate the results, we present a number of relatively simple RNCRNs trained to display a variety of biologically-important dynamical features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-variable control to mitigate loads in CRISPRa networks Some bounds on positive equilibria in mass action networks Non-explosivity of endotactic stochastic reaction systems Limits on the computational expressivity of non-equilibrium biophysical processes When lowering temperature, the in vivo circadian clock in cyanobacteria follows and surpasses the in vitro protein clock trough the Hopf bifurcation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1