Ruizhe Zhao, Ke Gao, Rongjiang Zhu, Zhuoran Zhang, Qiang He, Ming Xu, Niannian Yu, Hao Tong, Xiangshui Miao
{"title":"TiO2 介电晶面诱导 Ge2Sb2Te5 相变存储器中 650 ps 的 SET 速度","authors":"Ruizhe Zhao, Ke Gao, Rongjiang Zhu, Zhuoran Zhang, Qiang He, Ming Xu, Niannian Yu, Hao Tong, Xiangshui Miao","doi":"10.1002/inf2.12598","DOIUrl":null,"url":null,"abstract":"<p>Crystallization speed of phase change material is one of the main obstacles for the application of phase change memory (PCM) as storage class memory in computing systems, which requires the combination of nonvolatility with ultra-fast operation speed in nanoseconds. Here, we propose a novel approach to speed up crystallization process of the only commercial phase change chalcogenide Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> (GST). By employing TiO<sub>2</sub> as the dielectric layer in phase change device, operation speed of 650 ps has been achieved, which is the fastest among existing representative PCM, and is comparable to the programing speed of commercial dynamic random access memory (DRAM). Because of its octahedral atomic configuration, TiO<sub>2</sub> can provide nucleation interfaces for GST, thus facilitating the crystal growth at the determinate interface area. Ti–O–Ti–O four-fold rings on the (110) plane of tetragonal TiO<sub>2</sub> is critical for the fast-atomic rearrangement in the amorphous matrix of GST that enables ultra-fast operation speed. The significant improvement of operation speed in PCM through incorporating standard dielectric material TiO<sub>2</sub> in DRAM paves the way for the application of phase change memory in high performance cache-type data storage.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 9","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12598","citationCount":"0","resultStr":"{\"title\":\"650 ps SET speed in Ge2Sb2Te5 phase change memory induced by TiO2 dielectric crystal plane\",\"authors\":\"Ruizhe Zhao, Ke Gao, Rongjiang Zhu, Zhuoran Zhang, Qiang He, Ming Xu, Niannian Yu, Hao Tong, Xiangshui Miao\",\"doi\":\"10.1002/inf2.12598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Crystallization speed of phase change material is one of the main obstacles for the application of phase change memory (PCM) as storage class memory in computing systems, which requires the combination of nonvolatility with ultra-fast operation speed in nanoseconds. Here, we propose a novel approach to speed up crystallization process of the only commercial phase change chalcogenide Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> (GST). By employing TiO<sub>2</sub> as the dielectric layer in phase change device, operation speed of 650 ps has been achieved, which is the fastest among existing representative PCM, and is comparable to the programing speed of commercial dynamic random access memory (DRAM). Because of its octahedral atomic configuration, TiO<sub>2</sub> can provide nucleation interfaces for GST, thus facilitating the crystal growth at the determinate interface area. Ti–O–Ti–O four-fold rings on the (110) plane of tetragonal TiO<sub>2</sub> is critical for the fast-atomic rearrangement in the amorphous matrix of GST that enables ultra-fast operation speed. The significant improvement of operation speed in PCM through incorporating standard dielectric material TiO<sub>2</sub> in DRAM paves the way for the application of phase change memory in high performance cache-type data storage.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":48538,\"journal\":{\"name\":\"Infomat\",\"volume\":\"6 9\",\"pages\":\"\"},\"PeriodicalIF\":22.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12598\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infomat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12598\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12598","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
650 ps SET speed in Ge2Sb2Te5 phase change memory induced by TiO2 dielectric crystal plane
Crystallization speed of phase change material is one of the main obstacles for the application of phase change memory (PCM) as storage class memory in computing systems, which requires the combination of nonvolatility with ultra-fast operation speed in nanoseconds. Here, we propose a novel approach to speed up crystallization process of the only commercial phase change chalcogenide Ge2Sb2Te5 (GST). By employing TiO2 as the dielectric layer in phase change device, operation speed of 650 ps has been achieved, which is the fastest among existing representative PCM, and is comparable to the programing speed of commercial dynamic random access memory (DRAM). Because of its octahedral atomic configuration, TiO2 can provide nucleation interfaces for GST, thus facilitating the crystal growth at the determinate interface area. Ti–O–Ti–O four-fold rings on the (110) plane of tetragonal TiO2 is critical for the fast-atomic rearrangement in the amorphous matrix of GST that enables ultra-fast operation speed. The significant improvement of operation speed in PCM through incorporating standard dielectric material TiO2 in DRAM paves the way for the application of phase change memory in high performance cache-type data storage.
期刊介绍:
InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.