{"title":"SS 316H 和合金 617 在热纯化熔融 NaF-KF-UF4-UF3 盐中的腐蚀研究","authors":"Qiufeng Yang, Amanda Leong, Jinsuo Zhang","doi":"10.1002/maco.202414299","DOIUrl":null,"url":null,"abstract":"<p>The study investigates salt chemistry and corrosion behavior of SS 316H and Alloy 617 in thermally purified molten NaF-KF-UF<sub>4</sub>-UF<sub>3</sub> salts (UF<sub>4</sub>/UF<sub>3</sub> initial ratio 12–14) at 800°C for 120, 72, and 32 h. UF<sub>4</sub>/UF<sub>3</sub> ratio increases after corrosion tests. Cr species concentration in salts keeps increasing. Fe, Co, Ni, and Mo species increase first, then decrease. Cr/Mn oxides are formed along grain boundaries in SS 316H. Cr near the surface of Alloy 617 is completely depleted. A thin layer composed of Fe, Co, Ni, and Mo is observed on the Alloy 617 surface in 72-h and 32-h tests.</p>","PeriodicalId":18225,"journal":{"name":"Materials and Corrosion-werkstoffe Und Korrosion","volume":"75 11","pages":"1438-1462"},"PeriodicalIF":1.6000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion studies of SS 316H and Alloy 617 in thermally purified molten NaF-KF-UF4-UF3 salts\",\"authors\":\"Qiufeng Yang, Amanda Leong, Jinsuo Zhang\",\"doi\":\"10.1002/maco.202414299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study investigates salt chemistry and corrosion behavior of SS 316H and Alloy 617 in thermally purified molten NaF-KF-UF<sub>4</sub>-UF<sub>3</sub> salts (UF<sub>4</sub>/UF<sub>3</sub> initial ratio 12–14) at 800°C for 120, 72, and 32 h. UF<sub>4</sub>/UF<sub>3</sub> ratio increases after corrosion tests. Cr species concentration in salts keeps increasing. Fe, Co, Ni, and Mo species increase first, then decrease. Cr/Mn oxides are formed along grain boundaries in SS 316H. Cr near the surface of Alloy 617 is completely depleted. A thin layer composed of Fe, Co, Ni, and Mo is observed on the Alloy 617 surface in 72-h and 32-h tests.</p>\",\"PeriodicalId\":18225,\"journal\":{\"name\":\"Materials and Corrosion-werkstoffe Und Korrosion\",\"volume\":\"75 11\",\"pages\":\"1438-1462\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Corrosion-werkstoffe Und Korrosion\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/maco.202414299\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Corrosion-werkstoffe Und Korrosion","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/maco.202414299","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Corrosion studies of SS 316H and Alloy 617 in thermally purified molten NaF-KF-UF4-UF3 salts
The study investigates salt chemistry and corrosion behavior of SS 316H and Alloy 617 in thermally purified molten NaF-KF-UF4-UF3 salts (UF4/UF3 initial ratio 12–14) at 800°C for 120, 72, and 32 h. UF4/UF3 ratio increases after corrosion tests. Cr species concentration in salts keeps increasing. Fe, Co, Ni, and Mo species increase first, then decrease. Cr/Mn oxides are formed along grain boundaries in SS 316H. Cr near the surface of Alloy 617 is completely depleted. A thin layer composed of Fe, Co, Ni, and Mo is observed on the Alloy 617 surface in 72-h and 32-h tests.
期刊介绍:
Materials and Corrosion is the leading European journal in its field, providing rapid and comprehensive coverage of the subject and specifically highlighting the increasing importance of corrosion research and prevention.
Several sections exclusive to Materials and Corrosion bring you closer to the current events in the field of corrosion research and add to the impact this journal can make on your work.