用于精确非接触式手势感知和材料识别的双模耦合触觉感知器

IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Fiber Materials Pub Date : 2024-07-05 DOI:10.1007/s42765-024-00458-w
Guomin Ye, Qiang Wu, Yi Chen, Xueke Wang, Zhimin Xiang, Jingyan Duan, Yanfen Wan, Peng Yang
{"title":"用于精确非接触式手势感知和材料识别的双模耦合触觉感知器","authors":"Guomin Ye,&nbsp;Qiang Wu,&nbsp;Yi Chen,&nbsp;Xueke Wang,&nbsp;Zhimin Xiang,&nbsp;Jingyan Duan,&nbsp;Yanfen Wan,&nbsp;Peng Yang","doi":"10.1007/s42765-024-00458-w","DOIUrl":null,"url":null,"abstract":"<div><p>A bimodal coupled multifunctional tactile perceptron for contactless gesture recognition and material identification is proposed to address the challenges posed by limited functionality, signal interference from multimodal collaborative work, and the high power consumption of traditional tactile sensors. This perceptron integrates a capacitive sensor and a triboelectric sensor symmetrically, employing an energy complementarity strategy to reduce power consumption and implementing symmetrical distribution of two sensors for physical isolation to prevent signal interference. The capacitive sensor detects external pressure, providing information on material properties such as hardness, softness, and deformation, with a wide linear response range of 0–745.3 kPa. The triboelectric sensor captures the electron affinity of measured object. Further, by utilising machine learning algorithms, a system for contactless gesture recognition and material identification is engineered. This system demonstrates a remarkable accuracy rate of 98.5% when recognising 5 gestures, and achieves a perfect identification (100%) of 10 different materials aided by incorporating capacitive and triboelectric response. These results greatly advance the progress of tactile perceptrons with high integration, low power consumption, and multifunctionality, enhancing their effectiveness and reliability in smart device applications.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 6","pages":"1874 - 1886"},"PeriodicalIF":17.2000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bimodal Coupling Haptic Perceptron for Accurate Contactless Gesture Perception and Material Identification\",\"authors\":\"Guomin Ye,&nbsp;Qiang Wu,&nbsp;Yi Chen,&nbsp;Xueke Wang,&nbsp;Zhimin Xiang,&nbsp;Jingyan Duan,&nbsp;Yanfen Wan,&nbsp;Peng Yang\",\"doi\":\"10.1007/s42765-024-00458-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A bimodal coupled multifunctional tactile perceptron for contactless gesture recognition and material identification is proposed to address the challenges posed by limited functionality, signal interference from multimodal collaborative work, and the high power consumption of traditional tactile sensors. This perceptron integrates a capacitive sensor and a triboelectric sensor symmetrically, employing an energy complementarity strategy to reduce power consumption and implementing symmetrical distribution of two sensors for physical isolation to prevent signal interference. The capacitive sensor detects external pressure, providing information on material properties such as hardness, softness, and deformation, with a wide linear response range of 0–745.3 kPa. The triboelectric sensor captures the electron affinity of measured object. Further, by utilising machine learning algorithms, a system for contactless gesture recognition and material identification is engineered. This system demonstrates a remarkable accuracy rate of 98.5% when recognising 5 gestures, and achieves a perfect identification (100%) of 10 different materials aided by incorporating capacitive and triboelectric response. These results greatly advance the progress of tactile perceptrons with high integration, low power consumption, and multifunctionality, enhancing their effectiveness and reliability in smart device applications.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"6 6\",\"pages\":\"1874 - 1886\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-024-00458-w\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-024-00458-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于非接触式手势识别和材料识别的双模耦合多功能触觉感知器,以解决传统触觉传感器功能有限、多模态协同工作的信号干扰以及功耗高等难题。该感知器对称地集成了一个电容式传感器和一个三电传感器,采用能量互补策略降低功耗,并实现了两个传感器的对称分布,以物理隔离防止信号干扰。电容式传感器检测外部压力,提供硬度、柔软度和变形等材料属性信息,线性响应范围宽达 0-745.3 千帕。三电传感器可捕捉被测物体的电子亲和力。此外,通过利用机器学习算法,还设计了一个非接触式手势识别和材料识别系统。该系统在识别 5 种手势时的准确率高达 98.5%,并在电容和三电感应的帮助下实现了对 10 种不同材料的完美识别(100%)。这些成果极大地推动了高集成度、低功耗和多功能触觉感知器的发展,提高了其在智能设备应用中的有效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bimodal Coupling Haptic Perceptron for Accurate Contactless Gesture Perception and Material Identification

A bimodal coupled multifunctional tactile perceptron for contactless gesture recognition and material identification is proposed to address the challenges posed by limited functionality, signal interference from multimodal collaborative work, and the high power consumption of traditional tactile sensors. This perceptron integrates a capacitive sensor and a triboelectric sensor symmetrically, employing an energy complementarity strategy to reduce power consumption and implementing symmetrical distribution of two sensors for physical isolation to prevent signal interference. The capacitive sensor detects external pressure, providing information on material properties such as hardness, softness, and deformation, with a wide linear response range of 0–745.3 kPa. The triboelectric sensor captures the electron affinity of measured object. Further, by utilising machine learning algorithms, a system for contactless gesture recognition and material identification is engineered. This system demonstrates a remarkable accuracy rate of 98.5% when recognising 5 gestures, and achieves a perfect identification (100%) of 10 different materials aided by incorporating capacitive and triboelectric response. These results greatly advance the progress of tactile perceptrons with high integration, low power consumption, and multifunctionality, enhancing their effectiveness and reliability in smart device applications.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
期刊最新文献
Polymer-Carbon Nanotube Composite Fibers with Ultrahigh Dynamic Strength Correction: Vascular Endothelial Growth Factor-Recruiting Nanofiber Bandages Promote Multifunctional Skin Regeneration via Improved Angiogenesis and Immunomodulation Bioactive MgO/MgCO3/Polycaprolactone Multi-gradient Fibers Facilitate Peripheral Nerve Regeneration by Regulating Schwann Cell Function and Activating Wingless/Integrase-1 Signaling Correction: High-Performance Stainless-Steel-Fiber-Reinforced Thick Ultra-flexible Electrode Applicable to 3D Free-Form Batteries A Polyphenol–Metal Network of Propyl Gallate Gallium/Hafnium Oxide on Polyimide Fibers for Facilitating Ligament–Bone Healing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1