Nilesh U Sambhe, Manjusha Deshmukh, L. Ashok Kumar, Sandip Chavan, Nidhi P. Ranjan
{"title":"MCYP-DeepNet:使用 DeepNet 230 分类器进行基于营养和温度的季节性多作物产量预测","authors":"Nilesh U Sambhe, Manjusha Deshmukh, L. Ashok Kumar, Sandip Chavan, Nidhi P. Ranjan","doi":"10.3103/S1060992X24700115","DOIUrl":null,"url":null,"abstract":"<p>A vital source of nutrition and a major contributor to the nation’s economic expansion is agriculture. Due to numerous complex factors such as environment, humidity, soil nutrients, and soil moisture, multi crop yield forecasting was very challenging. Because crop prediction is a complicated process, improving performance is challenging. To address these problems, an advance deep learning model was developed to predict crop types and its yields in a particular soil. A real time data were created, which contain various parameters such as soil nutrition’s, weather, data, seasons and temperature. The created dataset is pre-processed using outlier detection as well as normalization because it contains unwanted rows and columns. After that, the pre-processed data were given as input for the DeepNet230 model to analyze the input parameters like soil nutrition and temperature to predict the multi crop type and its yield quantity. DeepNet230 have the capacity of automatic feature learning and rapid unstructured process, so it provides an efficient prediction performance of crop yield and its types. The performance analysis of crop prediction for the proposed model are 93.7% accuracy, 93.4% recall, 92.8% precision and 92.9% specificity. Then, the performance of yield prediction for the identified crops are 95.5% accuracy, 91.6% recall, 93% precision and 94.2% specificity. In addition, the developed method was compared with several opposing methods for validation. The observed results show that the suggested method performed significantly better in real time due to its improved predictive capabilities.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"33 2","pages":"236 - 253"},"PeriodicalIF":1.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MCYP-DeepNet: Nutrition and Temperature Based Season Wise Multi Crop Yield Prediction Using DeepNet 230 Classifier\",\"authors\":\"Nilesh U Sambhe, Manjusha Deshmukh, L. Ashok Kumar, Sandip Chavan, Nidhi P. Ranjan\",\"doi\":\"10.3103/S1060992X24700115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A vital source of nutrition and a major contributor to the nation’s economic expansion is agriculture. Due to numerous complex factors such as environment, humidity, soil nutrients, and soil moisture, multi crop yield forecasting was very challenging. Because crop prediction is a complicated process, improving performance is challenging. To address these problems, an advance deep learning model was developed to predict crop types and its yields in a particular soil. A real time data were created, which contain various parameters such as soil nutrition’s, weather, data, seasons and temperature. The created dataset is pre-processed using outlier detection as well as normalization because it contains unwanted rows and columns. After that, the pre-processed data were given as input for the DeepNet230 model to analyze the input parameters like soil nutrition and temperature to predict the multi crop type and its yield quantity. DeepNet230 have the capacity of automatic feature learning and rapid unstructured process, so it provides an efficient prediction performance of crop yield and its types. The performance analysis of crop prediction for the proposed model are 93.7% accuracy, 93.4% recall, 92.8% precision and 92.9% specificity. Then, the performance of yield prediction for the identified crops are 95.5% accuracy, 91.6% recall, 93% precision and 94.2% specificity. In addition, the developed method was compared with several opposing methods for validation. The observed results show that the suggested method performed significantly better in real time due to its improved predictive capabilities.</p>\",\"PeriodicalId\":721,\"journal\":{\"name\":\"Optical Memory and Neural Networks\",\"volume\":\"33 2\",\"pages\":\"236 - 253\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Memory and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1060992X24700115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X24700115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
MCYP-DeepNet: Nutrition and Temperature Based Season Wise Multi Crop Yield Prediction Using DeepNet 230 Classifier
A vital source of nutrition and a major contributor to the nation’s economic expansion is agriculture. Due to numerous complex factors such as environment, humidity, soil nutrients, and soil moisture, multi crop yield forecasting was very challenging. Because crop prediction is a complicated process, improving performance is challenging. To address these problems, an advance deep learning model was developed to predict crop types and its yields in a particular soil. A real time data were created, which contain various parameters such as soil nutrition’s, weather, data, seasons and temperature. The created dataset is pre-processed using outlier detection as well as normalization because it contains unwanted rows and columns. After that, the pre-processed data were given as input for the DeepNet230 model to analyze the input parameters like soil nutrition and temperature to predict the multi crop type and its yield quantity. DeepNet230 have the capacity of automatic feature learning and rapid unstructured process, so it provides an efficient prediction performance of crop yield and its types. The performance analysis of crop prediction for the proposed model are 93.7% accuracy, 93.4% recall, 92.8% precision and 92.9% specificity. Then, the performance of yield prediction for the identified crops are 95.5% accuracy, 91.6% recall, 93% precision and 94.2% specificity. In addition, the developed method was compared with several opposing methods for validation. The observed results show that the suggested method performed significantly better in real time due to its improved predictive capabilities.
期刊介绍:
The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.