主动采样:一种机器学习辅助框架,用于利用最优子样本进行有限总体推断

IF 2.3 3区 工程技术 Q1 STATISTICS & PROBABILITY Technometrics Pub Date : 2024-07-02 DOI:10.1080/00401706.2024.2374554
Henrik Imberg, Xiaomi Yang, Carol Flannagan, Jonas Bärgman
{"title":"主动采样:一种机器学习辅助框架,用于利用最优子样本进行有限总体推断","authors":"Henrik Imberg, Xiaomi Yang, Carol Flannagan, Jonas Bärgman","doi":"10.1080/00401706.2024.2374554","DOIUrl":null,"url":null,"abstract":"Data subsampling has become widely recognized as a tool to overcome computational and economic bottlenecks in analyzing massive datasets. We contribute to the development of adaptive design for est...","PeriodicalId":22208,"journal":{"name":"Technometrics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active sampling: A machine-learning-assisted framework for finite population inference with optimal subsamples\",\"authors\":\"Henrik Imberg, Xiaomi Yang, Carol Flannagan, Jonas Bärgman\",\"doi\":\"10.1080/00401706.2024.2374554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data subsampling has become widely recognized as a tool to overcome computational and economic bottlenecks in analyzing massive datasets. We contribute to the development of adaptive design for est...\",\"PeriodicalId\":22208,\"journal\":{\"name\":\"Technometrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technometrics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00401706.2024.2374554\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technometrics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00401706.2024.2374554","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在分析海量数据集时,数据子采样被广泛认为是克服计算和经济瓶颈的一种工具。我们致力于开发自适应设计的数据子采样技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Active sampling: A machine-learning-assisted framework for finite population inference with optimal subsamples
Data subsampling has become widely recognized as a tool to overcome computational and economic bottlenecks in analyzing massive datasets. We contribute to the development of adaptive design for est...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Technometrics
Technometrics 管理科学-统计学与概率论
CiteScore
4.50
自引率
16.00%
发文量
59
审稿时长
>12 weeks
期刊介绍: Technometrics is a Journal of Statistics for the Physical, Chemical, and Engineering Sciences, and is published Quarterly by the  American Society for Quality and the American Statistical Association.Since its inception in 1959, the mission of Technometrics has been to contribute to the development and use of statistical methods in the physical, chemical, and engineering sciences.
期刊最新文献
Bayesian sequential design of computer experiments for quantile set inversion Statistical Inference Based on Kernel Distribution Function Estimators Statistical Modeling of Occupant Behavior The Planetary Atom: A Fictional Account of George Adolphus Schott, the Forgotten Physicist Data Science and Machine Learning for Non-Programmers Using SAS Enterprise Miner, 1st ed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1