混合动力系统中的摊销方程发现

Yongtuo Liu, Sara Magliacane, Miltiadis Kofinas, Efstratios Gavves
{"title":"混合动力系统中的摊销方程发现","authors":"Yongtuo Liu, Sara Magliacane, Miltiadis Kofinas, Efstratios Gavves","doi":"arxiv-2406.03818","DOIUrl":null,"url":null,"abstract":"Hybrid dynamical systems are prevalent in science and engineering to express\ncomplex systems with continuous and discrete states. To learn the laws of\nsystems, all previous methods for equation discovery in hybrid systems follow a\ntwo-stage paradigm, i.e. they first group time series into small cluster\nfragments and then discover equations in each fragment separately through\nmethods in non-hybrid systems. Although effective, these methods do not fully\ntake advantage of the commonalities in the shared dynamics of multiple\nfragments that are driven by the same equations. Besides, the two-stage\nparadigm breaks the interdependence between categorizing and representing\ndynamics that jointly form hybrid systems. In this paper, we reformulate the\nproblem and propose an end-to-end learning framework, i.e. Amortized Equation\nDiscovery (AMORE), to jointly categorize modes and discover equations\ncharacterizing the dynamics of each mode by all segments of the mode.\nExperiments on four hybrid and six non-hybrid systems show that our method\noutperforms previous methods on equation discovery, segmentation, and\nforecasting.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"24 6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amortized Equation Discovery in Hybrid Dynamical Systems\",\"authors\":\"Yongtuo Liu, Sara Magliacane, Miltiadis Kofinas, Efstratios Gavves\",\"doi\":\"arxiv-2406.03818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid dynamical systems are prevalent in science and engineering to express\\ncomplex systems with continuous and discrete states. To learn the laws of\\nsystems, all previous methods for equation discovery in hybrid systems follow a\\ntwo-stage paradigm, i.e. they first group time series into small cluster\\nfragments and then discover equations in each fragment separately through\\nmethods in non-hybrid systems. Although effective, these methods do not fully\\ntake advantage of the commonalities in the shared dynamics of multiple\\nfragments that are driven by the same equations. Besides, the two-stage\\nparadigm breaks the interdependence between categorizing and representing\\ndynamics that jointly form hybrid systems. In this paper, we reformulate the\\nproblem and propose an end-to-end learning framework, i.e. Amortized Equation\\nDiscovery (AMORE), to jointly categorize modes and discover equations\\ncharacterizing the dynamics of each mode by all segments of the mode.\\nExperiments on four hybrid and six non-hybrid systems show that our method\\noutperforms previous methods on equation discovery, segmentation, and\\nforecasting.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"24 6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.03818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.03818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

混合动力系统在科学和工程领域非常普遍,用于表达具有连续和离散状态的复杂系统。为了学习系统的规律,以往在混合系统中发现方程的所有方法都遵循两阶段范式,即首先将时间序列分组为小的簇片段,然后通过非混合系统的方法分别发现每个片段中的方程。这些方法虽然有效,但不能充分利用由相同方程驱动的多个片段的共同动态的共性。此外,两阶段范式打破了共同构成混合系统的动力学分类和表示之间的相互依存关系。在本文中,我们重新阐述了这个问题,并提出了一个端到端的学习框架,即摊销方程发现(AMORE),以联合分类模式,并通过模式的所有分段发现描述每个模式动态的方程。在四个混合系统和六个非混合系统上的实验表明,我们的方法在方程发现、分段和预测方面优于之前的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Amortized Equation Discovery in Hybrid Dynamical Systems
Hybrid dynamical systems are prevalent in science and engineering to express complex systems with continuous and discrete states. To learn the laws of systems, all previous methods for equation discovery in hybrid systems follow a two-stage paradigm, i.e. they first group time series into small cluster fragments and then discover equations in each fragment separately through methods in non-hybrid systems. Although effective, these methods do not fully take advantage of the commonalities in the shared dynamics of multiple fragments that are driven by the same equations. Besides, the two-stage paradigm breaks the interdependence between categorizing and representing dynamics that jointly form hybrid systems. In this paper, we reformulate the problem and propose an end-to-end learning framework, i.e. Amortized Equation Discovery (AMORE), to jointly categorize modes and discover equations characterizing the dynamics of each mode by all segments of the mode. Experiments on four hybrid and six non-hybrid systems show that our method outperforms previous methods on equation discovery, segmentation, and forecasting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1