FDM 3D 打印热塑性聚氨酯/E-热塑性聚氨酯分层结构的卓越拉伸性能

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Research Pub Date : 2024-07-03 DOI:10.1557/s43578-024-01365-x
Muhammad Imran Farid, Wenzheng Wu, Guiwei Li, Aodu Zheng, Yu Zhao
{"title":"FDM 3D 打印热塑性聚氨酯/E-热塑性聚氨酯分层结构的卓越拉伸性能","authors":"Muhammad Imran Farid, Wenzheng Wu, Guiwei Li, Aodu Zheng, Yu Zhao","doi":"10.1557/s43578-024-01365-x","DOIUrl":null,"url":null,"abstract":"<p>The study examines 3D printing technology for robust and flexible prototypes, concentrating on FDM to improve the tensile properties of multilayer TPU and conductive TPU. This research aims at the mechanical properties of layered materials to evaluate how effectively rapid prototyping approaches adhere to robust and soft components. The research evaluated five TPU/E-TPU filaments that additively produced multilayer assemblies: Models (TET), (ETE), (TETE/ETET), (pure TPU), and (pure E-TPU). Models of pure TPU and pure E-TPU serve as standards for comparison. We tailored three input parameters at three levels each: layer thickness, printing speed, and extruder temperature. The experimental results of TET (emphasizing flexibility) and ETE (prioritizing electric conductivity)-layered model arrangements lead to the best mechanical properties. The ANOVA results for the tensile strength extension response models; <i>R</i><sup>2</sup> = 75.7%; adjusted <i>R</i><sup>2</sup> = 69.3%; and the tensile strain at yield is <i>R</i><sup>2</sup> = 71.4%; adjusted <i>R</i><sup>2</sup> = 65.7%.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":16306,"journal":{"name":"Journal of Materials Research","volume":"1 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superior tensile properties of FDM 3D-printed TPU/E-TPU layered structure\",\"authors\":\"Muhammad Imran Farid, Wenzheng Wu, Guiwei Li, Aodu Zheng, Yu Zhao\",\"doi\":\"10.1557/s43578-024-01365-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study examines 3D printing technology for robust and flexible prototypes, concentrating on FDM to improve the tensile properties of multilayer TPU and conductive TPU. This research aims at the mechanical properties of layered materials to evaluate how effectively rapid prototyping approaches adhere to robust and soft components. The research evaluated five TPU/E-TPU filaments that additively produced multilayer assemblies: Models (TET), (ETE), (TETE/ETET), (pure TPU), and (pure E-TPU). Models of pure TPU and pure E-TPU serve as standards for comparison. We tailored three input parameters at three levels each: layer thickness, printing speed, and extruder temperature. The experimental results of TET (emphasizing flexibility) and ETE (prioritizing electric conductivity)-layered model arrangements lead to the best mechanical properties. The ANOVA results for the tensile strength extension response models; <i>R</i><sup>2</sup> = 75.7%; adjusted <i>R</i><sup>2</sup> = 69.3%; and the tensile strain at yield is <i>R</i><sup>2</sup> = 71.4%; adjusted <i>R</i><sup>2</sup> = 65.7%.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\",\"PeriodicalId\":16306,\"journal\":{\"name\":\"Journal of Materials Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43578-024-01365-x\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-024-01365-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

该研究探讨了用于制造坚固和柔性原型的三维打印技术,重点是利用 FDM 改善多层热塑性聚氨酯和导电热塑性聚氨酯的拉伸性能。这项研究旨在研究分层材料的机械性能,以评估快速原型制作方法如何有效地粘附坚固和柔软的部件。研究评估了五种热塑性聚氨酯/导电热塑性聚氨酯长丝,这些长丝通过加成法生产多层组件:模型 (TET)、(ETE)、(TETE/EETET)、(纯 TPU)和(纯 E-TPU)。纯 TPU 和纯 E-TPU 模型作为比较标准。我们定制了三个输入参数,每个参数分为三个级别:层厚度、印刷速度和挤出机温度。实验结果表明,TET(强调柔韧性)和 ETE(优先考虑导电性)层状模型排列具有最佳的机械性能。拉伸强度扩展响应模型的方差分析结果为:R2 = 75.7%;调整后的 R2 = 69.3%;屈服点拉伸应变的方差分析结果为:R2 = 71.4%;调整后的 R2 = 65.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Superior tensile properties of FDM 3D-printed TPU/E-TPU layered structure

The study examines 3D printing technology for robust and flexible prototypes, concentrating on FDM to improve the tensile properties of multilayer TPU and conductive TPU. This research aims at the mechanical properties of layered materials to evaluate how effectively rapid prototyping approaches adhere to robust and soft components. The research evaluated five TPU/E-TPU filaments that additively produced multilayer assemblies: Models (TET), (ETE), (TETE/ETET), (pure TPU), and (pure E-TPU). Models of pure TPU and pure E-TPU serve as standards for comparison. We tailored three input parameters at three levels each: layer thickness, printing speed, and extruder temperature. The experimental results of TET (emphasizing flexibility) and ETE (prioritizing electric conductivity)-layered model arrangements lead to the best mechanical properties. The ANOVA results for the tensile strength extension response models; R2 = 75.7%; adjusted R2 = 69.3%; and the tensile strain at yield is R2 = 71.4%; adjusted R2 = 65.7%.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Research
Journal of Materials Research 工程技术-材料科学:综合
CiteScore
4.50
自引率
3.70%
发文量
362
审稿时长
2.8 months
期刊介绍: Journal of Materials Research (JMR) publishes the latest advances about the creation of new materials and materials with novel functionalities, fundamental understanding of processes that control the response of materials, and development of materials with significant performance improvements relative to state of the art materials. JMR welcomes papers that highlight novel processing techniques, the application and development of new analytical tools, and interpretation of fundamental materials science to achieve enhanced materials properties and uses. Materials research papers in the following topical areas are welcome. • Novel materials discovery • Electronic, photonic and magnetic materials • Energy Conversion and storage materials • New thermal and structural materials • Soft materials • Biomaterials and related topics • Nanoscale science and technology • Advances in materials characterization methods and techniques • Computational materials science, modeling and theory
期刊最新文献
Effect of Co concentration on cation distribution and magnetic and magneto-optical properties of CoxZn1-xFe2O4 nanoparticles synthesized with citrate precursor method Fabrication and characterization of nanocomposite hydrogel based N-succinyl chitosan/oxidized tragacanth gum/silver nanoparticles for biomedical materials Development of a processing route for the fabrication of thin hierarchically porous copper self-standing structure using direct ink writing and sintering for electrochemical energy storage application Rapidly synthesis of AuM (M = Pt, Pd) hexagonals/graphene quantum dots nanostructures and their application for non-enzyme hydrogen peroxide detection Nanocomposites Fe2O3/PNR loaded partially reduced rGO/GCE as an electrochemical probe for selective determination of uric acid and dopamine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1