不断变化的土壤特性影响印度西北部干旱地区以污水为主的河道沿岸的植被多样性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-07-04 DOI:10.1111/wej.12943
Genda Singh, Prem Raj Nagora, Parul Haksar, Deepak Mishra
{"title":"不断变化的土壤特性影响印度西北部干旱地区以污水为主的河道沿岸的植被多样性","authors":"Genda Singh, Prem Raj Nagora, Parul Haksar, Deepak Mishra","doi":"10.1111/wej.12943","DOIUrl":null,"url":null,"abstract":"Improving the environmental quality of effluent‐dominated seasonal rivers is a fundamental challenge for sustaining life in drylands, where people utilize contaminated water to produce food, which ultimately accumulates in the food chain. Preventing further contaminations and phytoremediation are needed to avoid environmental degradation and health risks. This study aimed at analysing water quality and its impacts on soil and vegetation at effluent‐impacted, river‐edge and non‐polluted (control) micro‐habitats at five sites along Luni, Bandi and Jojari Rivers each in western Rajasthan. Soil and water samples were collected and analysed, and vegetation was recorded. River water exhibited high pH (7.60–8.60), electrical conductivity (EC; 2.45–38.20 dS m<jats:sup>−1</jats:sup>), total dissolved solid (TDS; 1.26–30.86 g L<jats:sup>−1</jats:sup>), alkalinity (24.0–250.0 mg L<jats:sup>−1</jats:sup>) and Na (1.50–30.00 g L<jats:sup>−1</jats:sup>), K (29.0–1100.0 mg L<jats:sup>−1</jats:sup>), Ca (136.0–3800.0 mg L<jats:sup>−1</jats:sup>) and Mn (0.05–83.92 mg L<jats:sup>−1</jats:sup>) concentrations and low NH<jats:sub>4</jats:sub>‐N, NO<jats:sub>3</jats:sub>‐N, PO<jats:sub>4</jats:sub>‐P and heavy metals. Species numbers ranged between 32 along Luni and 20 along Jojari. Soil pH, EC, PO<jats:sub>4</jats:sub>‐P and shrub richness (R), diversity (H′) and evenness (e') were highest for Bandi, whereas NH<jats:sub>4</jats:sub>‐N, NO<jats:sub>3</jats:sub>‐N, K and tree R and H′ were highest for Jojari River. Soil variables decreased and plant diversity increased downstream. Concentrations of Cd, Zn, Cr, Cu and Pb were above the acceptable limit in leaf of <jats:styled-content style=\"fixed-case\"><jats:italic>Salvadora persica</jats:italic></jats:styled-content> and <jats:styled-content style=\"fixed-case\"><jats:italic>Prosopis juliflora</jats:italic></jats:styled-content>. Principal component analysis (PCA) revealed significant relationships between different variables of river water, soil, and vegetation and 11 PCA axes. Conclusively, industry effluents negatively affected water, soil and river ecology. Effluent‐impacted soils had high salinity and less diversity adapted by salt‐tolerant species, complementary effects of which contribute to restoring the modified ecosystem and urban greening. Although people utilize effluent‐contaminated water in irrigation, precautions should be taken to avoid environmental and animal/human health risks.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changing soil properties influenced vegetation diversity along effluent‐dominated river courses in dry areas of north‐western India\",\"authors\":\"Genda Singh, Prem Raj Nagora, Parul Haksar, Deepak Mishra\",\"doi\":\"10.1111/wej.12943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improving the environmental quality of effluent‐dominated seasonal rivers is a fundamental challenge for sustaining life in drylands, where people utilize contaminated water to produce food, which ultimately accumulates in the food chain. Preventing further contaminations and phytoremediation are needed to avoid environmental degradation and health risks. This study aimed at analysing water quality and its impacts on soil and vegetation at effluent‐impacted, river‐edge and non‐polluted (control) micro‐habitats at five sites along Luni, Bandi and Jojari Rivers each in western Rajasthan. Soil and water samples were collected and analysed, and vegetation was recorded. River water exhibited high pH (7.60–8.60), electrical conductivity (EC; 2.45–38.20 dS m<jats:sup>−1</jats:sup>), total dissolved solid (TDS; 1.26–30.86 g L<jats:sup>−1</jats:sup>), alkalinity (24.0–250.0 mg L<jats:sup>−1</jats:sup>) and Na (1.50–30.00 g L<jats:sup>−1</jats:sup>), K (29.0–1100.0 mg L<jats:sup>−1</jats:sup>), Ca (136.0–3800.0 mg L<jats:sup>−1</jats:sup>) and Mn (0.05–83.92 mg L<jats:sup>−1</jats:sup>) concentrations and low NH<jats:sub>4</jats:sub>‐N, NO<jats:sub>3</jats:sub>‐N, PO<jats:sub>4</jats:sub>‐P and heavy metals. Species numbers ranged between 32 along Luni and 20 along Jojari. Soil pH, EC, PO<jats:sub>4</jats:sub>‐P and shrub richness (R), diversity (H′) and evenness (e') were highest for Bandi, whereas NH<jats:sub>4</jats:sub>‐N, NO<jats:sub>3</jats:sub>‐N, K and tree R and H′ were highest for Jojari River. Soil variables decreased and plant diversity increased downstream. Concentrations of Cd, Zn, Cr, Cu and Pb were above the acceptable limit in leaf of <jats:styled-content style=\\\"fixed-case\\\"><jats:italic>Salvadora persica</jats:italic></jats:styled-content> and <jats:styled-content style=\\\"fixed-case\\\"><jats:italic>Prosopis juliflora</jats:italic></jats:styled-content>. Principal component analysis (PCA) revealed significant relationships between different variables of river water, soil, and vegetation and 11 PCA axes. Conclusively, industry effluents negatively affected water, soil and river ecology. Effluent‐impacted soils had high salinity and less diversity adapted by salt‐tolerant species, complementary effects of which contribute to restoring the modified ecosystem and urban greening. Although people utilize effluent‐contaminated water in irrigation, precautions should be taken to avoid environmental and animal/human health risks.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/wej.12943\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/wej.12943","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

改善以污水为主的季节性河流的环境质量是维持干旱地区生命的一项根本性挑战,人们利用受污染的水生产食物,最终在食物链中累积。为避免环境恶化和健康风险,需要防止进一步污染并进行植物修复。本研究旨在分析拉贾斯坦邦西部卢尼河、班迪河和乔贾里河沿岸五个地点受污水影响、河边和未受污染(对照)的微生境的水质及其对土壤和植被的影响。对土壤和水样进行了采集和分析,并对植被进行了记录。河水的 pH 值(7.60-8.60)、电导率(EC;2.45-38.20 dS m-1)、总溶解固体(TDS;1.26-30.86 g L-1)、碱度(24.0-250.0 mg L-1)和 Na(1.钾(29.0-1100.0 毫克/升)、钙(136.0-3800.0 毫克/升)和锰(0.05-83.92 毫克/升)浓度,以及较低的 NH4-N、NO3-N、PO4-P 和重金属浓度。物种数量在 Luni 沿岸 32 种和 Jojari 沿岸 20 种之间。班迪河的土壤 pH 值、EC 值、PO4-P 和灌木丰富度(R)、多样性(H′)和均匀度(e')最高,而乔贾里河的 NH4-N、NO3-N、K 和树木 R 和 H′最高。下游土壤变量减少,植物多样性增加。镉、锌、铬、铜和铅的浓度在 Salvadora persica 和 Prosopis juliflora 的叶片中超过了可接受的限度。主成分分析(PCA)显示,河水、土壤和植被的不同变量与 11 个 PCA 轴之间存在显著关系。结论是,工业废水对水、土壤和河流生态产生了负面影响。受污水影响的土壤盐度较高,耐盐物种的适应多样性较低,这些互补效应有助于恢复被改变的生态系统和城市绿化。尽管人们在灌溉中使用了被污水污染的水,但应采取预防措施,以避免对环境和人畜健康造成危害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Changing soil properties influenced vegetation diversity along effluent‐dominated river courses in dry areas of north‐western India
Improving the environmental quality of effluent‐dominated seasonal rivers is a fundamental challenge for sustaining life in drylands, where people utilize contaminated water to produce food, which ultimately accumulates in the food chain. Preventing further contaminations and phytoremediation are needed to avoid environmental degradation and health risks. This study aimed at analysing water quality and its impacts on soil and vegetation at effluent‐impacted, river‐edge and non‐polluted (control) micro‐habitats at five sites along Luni, Bandi and Jojari Rivers each in western Rajasthan. Soil and water samples were collected and analysed, and vegetation was recorded. River water exhibited high pH (7.60–8.60), electrical conductivity (EC; 2.45–38.20 dS m−1), total dissolved solid (TDS; 1.26–30.86 g L−1), alkalinity (24.0–250.0 mg L−1) and Na (1.50–30.00 g L−1), K (29.0–1100.0 mg L−1), Ca (136.0–3800.0 mg L−1) and Mn (0.05–83.92 mg L−1) concentrations and low NH4‐N, NO3‐N, PO4‐P and heavy metals. Species numbers ranged between 32 along Luni and 20 along Jojari. Soil pH, EC, PO4‐P and shrub richness (R), diversity (H′) and evenness (e') were highest for Bandi, whereas NH4‐N, NO3‐N, K and tree R and H′ were highest for Jojari River. Soil variables decreased and plant diversity increased downstream. Concentrations of Cd, Zn, Cr, Cu and Pb were above the acceptable limit in leaf of Salvadora persica and Prosopis juliflora. Principal component analysis (PCA) revealed significant relationships between different variables of river water, soil, and vegetation and 11 PCA axes. Conclusively, industry effluents negatively affected water, soil and river ecology. Effluent‐impacted soils had high salinity and less diversity adapted by salt‐tolerant species, complementary effects of which contribute to restoring the modified ecosystem and urban greening. Although people utilize effluent‐contaminated water in irrigation, precautions should be taken to avoid environmental and animal/human health risks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1