评估钢铁去碳化战略对环境和市场的影响:欧盟混合投入产出模型

IF 5.8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Research Letters Pub Date : 2024-07-04 DOI:10.1088/1748-9326/ad5bf1
Lorenzo Rinaldi, Debora Ghezzi, Emanuela Colombo and Matteo Vincenzo Rocco
{"title":"评估钢铁去碳化战略对环境和市场的影响:欧盟混合投入产出模型","authors":"Lorenzo Rinaldi, Debora Ghezzi, Emanuela Colombo and Matteo Vincenzo Rocco","doi":"10.1088/1748-9326/ad5bf1","DOIUrl":null,"url":null,"abstract":"As a key material for manufacturing clean energy technologies, steel is crucial for energy transition, but its production causes 2.6 Gton of CO2 emissions at global level each year. In 2020 the European Union (EU) set a net-zero emissions target by 2050, fostering innovation in the steel industry to reduce its environmental impact. However, a scenario-oriented and technologically comprehensive analysis assessing prospected environmental and market implications of steel decarbonisation strategies remains a gap, which is addressed in this paper. The analysis adopts a hybrid input-output-based life-cycle assessment model built in the MARIO framework, extending the Exiobase database to represent the supply chains of the most promising low-carbon steelmaking technologies in the EU, such as hydrogen- or charcoal-injected blast furnaces and natural gas- and hydrogen-based direct reduction routes. The penetration of these technologies is explored by formulating scenarios resembling European climate targets. The results show a reduction in the carbon footprint of steel across all scenarios, ranging up to −26% in 2030 and to −60% in 2050. However, the extent of footprint reduction is highly dependent on the share of clean electricity in the European supply mix, highlighting the relevance of holistic decarbonisation strategies. Economic implications affect steel prices, which rise up to 25% in 2030 and 56% in 2050, opening discussions on the need for suitable policies such as CBAM to avoid protectionism and encourage international technological progress.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing environmental and market implications of steel decarbonisation strategies: a hybrid input-output model for the European union\",\"authors\":\"Lorenzo Rinaldi, Debora Ghezzi, Emanuela Colombo and Matteo Vincenzo Rocco\",\"doi\":\"10.1088/1748-9326/ad5bf1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a key material for manufacturing clean energy technologies, steel is crucial for energy transition, but its production causes 2.6 Gton of CO2 emissions at global level each year. In 2020 the European Union (EU) set a net-zero emissions target by 2050, fostering innovation in the steel industry to reduce its environmental impact. However, a scenario-oriented and technologically comprehensive analysis assessing prospected environmental and market implications of steel decarbonisation strategies remains a gap, which is addressed in this paper. The analysis adopts a hybrid input-output-based life-cycle assessment model built in the MARIO framework, extending the Exiobase database to represent the supply chains of the most promising low-carbon steelmaking technologies in the EU, such as hydrogen- or charcoal-injected blast furnaces and natural gas- and hydrogen-based direct reduction routes. The penetration of these technologies is explored by formulating scenarios resembling European climate targets. The results show a reduction in the carbon footprint of steel across all scenarios, ranging up to −26% in 2030 and to −60% in 2050. However, the extent of footprint reduction is highly dependent on the share of clean electricity in the European supply mix, highlighting the relevance of holistic decarbonisation strategies. Economic implications affect steel prices, which rise up to 25% in 2030 and 56% in 2050, opening discussions on the need for suitable policies such as CBAM to avoid protectionism and encourage international technological progress.\",\"PeriodicalId\":11747,\"journal\":{\"name\":\"Environmental Research Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-9326/ad5bf1\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/1748-9326/ad5bf1","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

作为生产清洁能源技术的关键材料,钢铁对能源转型至关重要,但其生产每年在全球范围内造成 260 万吨二氧化碳排放。2020 年,欧盟(EU)设定了到 2050 年实现净零排放的目标,以促进钢铁行业的创新,减少对环境的影响。然而,对钢铁去碳化战略对环境和市场的预期影响进行以情景为导向、技术全面的分析评估仍然是一个空白,本文对此进行了探讨。该分析采用 MARIO 框架下基于投入产出的混合生命周期评估模型,扩展了 Exiobase 数据库,以代表欧盟最有前途的低碳炼钢技术的供应链,如氢或木炭喷射高炉以及基于天然气和氢的直接还原路线。通过制定与欧洲气候目标相似的方案,探讨了这些技术的普及情况。结果显示,在所有方案中,钢铁的碳足迹都有所减少,2030 年减少 26%,2050 年减少 60%。然而,碳足迹的减少程度在很大程度上取决于清洁电力在欧洲供应结构中所占的比例,这突出了整体去碳化战略的相关性。经济影响会影响钢材价格,2030 年钢材价格将上涨 25%,2050 年将上涨 56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessing environmental and market implications of steel decarbonisation strategies: a hybrid input-output model for the European union
As a key material for manufacturing clean energy technologies, steel is crucial for energy transition, but its production causes 2.6 Gton of CO2 emissions at global level each year. In 2020 the European Union (EU) set a net-zero emissions target by 2050, fostering innovation in the steel industry to reduce its environmental impact. However, a scenario-oriented and technologically comprehensive analysis assessing prospected environmental and market implications of steel decarbonisation strategies remains a gap, which is addressed in this paper. The analysis adopts a hybrid input-output-based life-cycle assessment model built in the MARIO framework, extending the Exiobase database to represent the supply chains of the most promising low-carbon steelmaking technologies in the EU, such as hydrogen- or charcoal-injected blast furnaces and natural gas- and hydrogen-based direct reduction routes. The penetration of these technologies is explored by formulating scenarios resembling European climate targets. The results show a reduction in the carbon footprint of steel across all scenarios, ranging up to −26% in 2030 and to −60% in 2050. However, the extent of footprint reduction is highly dependent on the share of clean electricity in the European supply mix, highlighting the relevance of holistic decarbonisation strategies. Economic implications affect steel prices, which rise up to 25% in 2030 and 56% in 2050, opening discussions on the need for suitable policies such as CBAM to avoid protectionism and encourage international technological progress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Research Letters
Environmental Research Letters 环境科学-环境科学
CiteScore
11.90
自引率
4.50%
发文量
763
审稿时长
4.3 months
期刊介绍: Environmental Research Letters (ERL) is a high-impact, open-access journal intended to be the meeting place of the research and policy communities concerned with environmental change and management. The journal''s coverage reflects the increasingly interdisciplinary nature of environmental science, recognizing the wide-ranging contributions to the development of methods, tools and evaluation strategies relevant to the field. Submissions from across all components of the Earth system, i.e. land, atmosphere, cryosphere, biosphere and hydrosphere, and exchanges between these components are welcome.
期刊最新文献
Impact of COVID-19 pandemic on greenhouse gas and criteria air pollutant emissions from the San Pedro Bay Ports and future policy implications. Shifting power: data democracy in engineering solutions. Central America’s agro-ecological suitability for cultivating coca, Erythroxylum spp Detecting atmospheric oxidation in the PM2.5 and ozone multilayer complex network Advancing ambient water quality monitoring and management through citizen science in low- and middle-income countries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1