室温下快速合成分层多孔 ZIF-93 以有效吸附挥发性有机化合物

Haiqi Zhang, Kaikai Zhao, Weibiao Guo, Kuan Liang, Jingjing Li, Xu Li, Qianjun Deng, Xuejun Xu, Huixia Chao, Hongxia Xi, ChongXiong Duan
{"title":"室温下快速合成分层多孔 ZIF-93 以有效吸附挥发性有机化合物","authors":"Haiqi Zhang, Kaikai Zhao, Weibiao Guo, Kuan Liang, Jingjing Li, Xu Li, Qianjun Deng, Xuejun Xu, Huixia Chao, Hongxia Xi, ChongXiong Duan","doi":"10.1039/d4im00033a","DOIUrl":null,"url":null,"abstract":"Facile synthesis conditions, abundant hierarchical porosity, and high space-time yields (STYs) are prerequisites for the commercial application of zeolitic imidazolate frameworks (ZIFs). However, these prerequisites are rarely achieved simultaneously. Herein, a green and versatile strategy to rapidly synthesize hierarchically porous ZIFs (HP-ZIFs) was developed using an alkali as a deprotonating agent. The synthesis conditions were room temperature and ambient pressure in an aqueous solution, and the synthesis time could be reduced to 1 min. The produced HP-ZIFs had hierarchically porous structures with mesopores and macropores interconnected with micropores. The STY for HP-ZIFs was up to 9670 kg m<small><sup>-3</sup></small> d<small><sup>-1</sup></small>, at least 712 times the previously reported values. In addition, the porosity and morphology of the produced HP-ZIFs could be fine-tuned by controlling the synthesis parameters (e.g., reaction time, molar ratios, metal source, and alkali source). Compared with conventional ZIFs, the adsorption performance of the as-synthesized HP-ZIFs for <em>p</em>-xylene and <em>n</em>-hexane was significantly improved. Positron annihilation lifetime spectroscopy (PALS) was utilized to study the pore properties, and the adsorption behavior of HP-ZIFs on guest molecules was investigated using density functional theory (DFT) simulations. This strategy shows significant promise for the large-scale industrial production of desirable HP-ZIFs for adsorption applications.","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Room-temperature rapid synthesis of hierarchically porous ZIF-93 for effective adsorption of volatile organic compounds\",\"authors\":\"Haiqi Zhang, Kaikai Zhao, Weibiao Guo, Kuan Liang, Jingjing Li, Xu Li, Qianjun Deng, Xuejun Xu, Huixia Chao, Hongxia Xi, ChongXiong Duan\",\"doi\":\"10.1039/d4im00033a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facile synthesis conditions, abundant hierarchical porosity, and high space-time yields (STYs) are prerequisites for the commercial application of zeolitic imidazolate frameworks (ZIFs). However, these prerequisites are rarely achieved simultaneously. Herein, a green and versatile strategy to rapidly synthesize hierarchically porous ZIFs (HP-ZIFs) was developed using an alkali as a deprotonating agent. The synthesis conditions were room temperature and ambient pressure in an aqueous solution, and the synthesis time could be reduced to 1 min. The produced HP-ZIFs had hierarchically porous structures with mesopores and macropores interconnected with micropores. The STY for HP-ZIFs was up to 9670 kg m<small><sup>-3</sup></small> d<small><sup>-1</sup></small>, at least 712 times the previously reported values. In addition, the porosity and morphology of the produced HP-ZIFs could be fine-tuned by controlling the synthesis parameters (e.g., reaction time, molar ratios, metal source, and alkali source). Compared with conventional ZIFs, the adsorption performance of the as-synthesized HP-ZIFs for <em>p</em>-xylene and <em>n</em>-hexane was significantly improved. Positron annihilation lifetime spectroscopy (PALS) was utilized to study the pore properties, and the adsorption behavior of HP-ZIFs on guest molecules was investigated using density functional theory (DFT) simulations. This strategy shows significant promise for the large-scale industrial production of desirable HP-ZIFs for adsorption applications.\",\"PeriodicalId\":29808,\"journal\":{\"name\":\"Industrial Chemistry & Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Chemistry & Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/d4im00033a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4im00033a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

简便的合成条件、丰富的分层孔隙率和高时空产率(STYs)是沸石咪唑啉框架(ZIFs)商业化应用的先决条件。然而,这些先决条件很少能同时实现。在此,我们利用碱作为去质子剂,开发了一种快速合成分层多孔沸石咪唑啉框架(HP-ZIFs)的绿色多功能策略。合成条件为室温和环境压力下的水溶液,合成时间可缩短至 1 分钟。制得的 HP-ZIF 具有分层多孔结构,中孔和大孔与微孔相互连接。HP-ZIF 的 STY 高达 9670 kg m-3 d-1,是之前报道值的至少 712 倍。此外,还可以通过控制合成参数(如反应时间、摩尔比、金属源和碱源)对所制得的 HP-ZIF 的孔隙率和形态进行微调。与传统的 ZIF 相比,合成的 HP-ZIF 对对二甲苯和正己烷的吸附性能显著提高。正电子湮灭寿命光谱(PALS)被用来研究孔隙特性,密度泛函理论(DFT)模拟则研究了 HP-ZIFs 对客体分子的吸附行为。这一策略为大规模工业化生产理想的吸附应用 HP-ZIFs 带来了巨大希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Room-temperature rapid synthesis of hierarchically porous ZIF-93 for effective adsorption of volatile organic compounds
Facile synthesis conditions, abundant hierarchical porosity, and high space-time yields (STYs) are prerequisites for the commercial application of zeolitic imidazolate frameworks (ZIFs). However, these prerequisites are rarely achieved simultaneously. Herein, a green and versatile strategy to rapidly synthesize hierarchically porous ZIFs (HP-ZIFs) was developed using an alkali as a deprotonating agent. The synthesis conditions were room temperature and ambient pressure in an aqueous solution, and the synthesis time could be reduced to 1 min. The produced HP-ZIFs had hierarchically porous structures with mesopores and macropores interconnected with micropores. The STY for HP-ZIFs was up to 9670 kg m-3 d-1, at least 712 times the previously reported values. In addition, the porosity and morphology of the produced HP-ZIFs could be fine-tuned by controlling the synthesis parameters (e.g., reaction time, molar ratios, metal source, and alkali source). Compared with conventional ZIFs, the adsorption performance of the as-synthesized HP-ZIFs for p-xylene and n-hexane was significantly improved. Positron annihilation lifetime spectroscopy (PALS) was utilized to study the pore properties, and the adsorption behavior of HP-ZIFs on guest molecules was investigated using density functional theory (DFT) simulations. This strategy shows significant promise for the large-scale industrial production of desirable HP-ZIFs for adsorption applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial Chemistry & Materials
Industrial Chemistry & Materials chemistry, chemical engineering, functional materials, energy, etc.-
自引率
0.00%
发文量
0
期刊介绍: Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated. The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale. Industrial Chemistry & Materials publishes: ● Communications ● Full papers ● Minireviews ● Reviews ● Perspectives ● Comments
期刊最新文献
Membrane-free sequential paired electrosynthesis of 1,4-hydroquinone from phenol over a self-supported electrocatalytic electrode Back cover Toward a low-cost uranium-adsorbing material based on nonwoven fabrics and photografting technology Depolymerization of PET with Ethanol by Homogeneous Iron Catalysts Applied for Exclusive Chemical Recycling of Cloth Waste Introduction to the themed issue on liquid-based materials: novel concepts from fundamentals to applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1