早期宇宙中暗物质对的有效场理论:质量中心反冲效应

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Journal of High Energy Physics Pub Date : 2024-07-03 DOI:10.1007/jhep07(2024)021
S. Biondini, N. Brambilla, G. Qerimi, A. Vairo
{"title":"早期宇宙中暗物质对的有效场理论:质量中心反冲效应","authors":"S. Biondini, N. Brambilla, G. Qerimi, A. Vairo","doi":"10.1007/jhep07(2024)021","DOIUrl":null,"url":null,"abstract":"<p>For non-relativistic thermal dark matter, close-to-threshold effects largely dominate the evolution of the number density for most of the times after thermal freeze-out, and hence affect the cosmological relic density. A precise evaluation of the relevant interaction rates in a thermal medium representing the early universe includes accounting for the relative motion of the dark matter particles and the thermal medium. We consider a model of dark fermions interacting with a plasma of dark gauge bosons, which is equivalent to thermal QED. The temperature is taken to be smaller than the dark fermion mass and the inverse of the typical size of the dark fermion-antifermion bound states, which allows for the use of non-relativistic effective field theories. For the annihilation cross section, bound-state formation cross section, bound-state dissociation width and bound-state transition width of dark matter fermion-antifermion pairs, we compute the leading recoil effects in the reference frame of both the plasma and the center-of-mass of the fermion-antifermion pair. We explicitly verify the Lorentz transformations among these quantities. We evaluate the impact of the recoil corrections on the dark matter energy density. Our results can be directly applied to account for the relative motion of quarkonia in the quark-gluon plasma formed in heavy-ion collisions. They may be also used to precisely assess thermal effects in atomic clocks based on atomic transitions; the present work provides a first field theory derivation of time dilation for these processes in vacuum and in a medium.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective field theories for dark matter pairs in the early universe: center-of-mass recoil effects\",\"authors\":\"S. Biondini, N. Brambilla, G. Qerimi, A. Vairo\",\"doi\":\"10.1007/jhep07(2024)021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For non-relativistic thermal dark matter, close-to-threshold effects largely dominate the evolution of the number density for most of the times after thermal freeze-out, and hence affect the cosmological relic density. A precise evaluation of the relevant interaction rates in a thermal medium representing the early universe includes accounting for the relative motion of the dark matter particles and the thermal medium. We consider a model of dark fermions interacting with a plasma of dark gauge bosons, which is equivalent to thermal QED. The temperature is taken to be smaller than the dark fermion mass and the inverse of the typical size of the dark fermion-antifermion bound states, which allows for the use of non-relativistic effective field theories. For the annihilation cross section, bound-state formation cross section, bound-state dissociation width and bound-state transition width of dark matter fermion-antifermion pairs, we compute the leading recoil effects in the reference frame of both the plasma and the center-of-mass of the fermion-antifermion pair. We explicitly verify the Lorentz transformations among these quantities. We evaluate the impact of the recoil corrections on the dark matter energy density. Our results can be directly applied to account for the relative motion of quarkonia in the quark-gluon plasma formed in heavy-ion collisions. They may be also used to precisely assess thermal effects in atomic clocks based on atomic transitions; the present work provides a first field theory derivation of time dilation for these processes in vacuum and in a medium.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/jhep07(2024)021\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/jhep07(2024)021","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

对于非相对论热暗物质,在热冻结之后的大部分时间里,接近阈值效应在很大程度上主导着数量密度的演化,从而影响宇宙学遗迹密度。要精确评估代表早期宇宙的热介质中的相关相互作用率,就必须考虑暗物质粒子和热介质的相对运动。我们考虑了一个暗费米子与暗规玻色子等离子体相互作用的模型,这相当于热QED。温度小于暗费米子质量和暗费米子-反费米子束缚态典型尺寸的倒数,这样就可以使用非相对论有效场理论。对于暗物质费米子-反费米子对的湮灭截面、束缚态形成截面、束缚态解离宽度和束缚态转变宽度,我们计算了等离子体和费米子-反费米子对质量中心参照系下的前导反冲效应。我们明确验证了这些量之间的洛伦兹变换。我们评估了反冲修正对暗物质能量密度的影响。我们的结果可以直接用于解释重离子碰撞中形成的夸克-胶子等离子体中夸克离子的相对运动。这些结果还可用于精确评估基于原子跃迁的原子钟的热效应;本研究为这些过程在真空和介质中的时间膨胀提供了第一个场论推导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective field theories for dark matter pairs in the early universe: center-of-mass recoil effects

For non-relativistic thermal dark matter, close-to-threshold effects largely dominate the evolution of the number density for most of the times after thermal freeze-out, and hence affect the cosmological relic density. A precise evaluation of the relevant interaction rates in a thermal medium representing the early universe includes accounting for the relative motion of the dark matter particles and the thermal medium. We consider a model of dark fermions interacting with a plasma of dark gauge bosons, which is equivalent to thermal QED. The temperature is taken to be smaller than the dark fermion mass and the inverse of the typical size of the dark fermion-antifermion bound states, which allows for the use of non-relativistic effective field theories. For the annihilation cross section, bound-state formation cross section, bound-state dissociation width and bound-state transition width of dark matter fermion-antifermion pairs, we compute the leading recoil effects in the reference frame of both the plasma and the center-of-mass of the fermion-antifermion pair. We explicitly verify the Lorentz transformations among these quantities. We evaluate the impact of the recoil corrections on the dark matter energy density. Our results can be directly applied to account for the relative motion of quarkonia in the quark-gluon plasma formed in heavy-ion collisions. They may be also used to precisely assess thermal effects in atomic clocks based on atomic transitions; the present work provides a first field theory derivation of time dilation for these processes in vacuum and in a medium.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
期刊最新文献
Probing Inert Triplet Model at a multi-TeV muon collider via vector boson fusion with forward muon tagging Quasibound and quasinormal modes of a thick brane in Rastall gravity On the charge algebra of causal diamonds in three dimensional gravity Impact of the cosmic neutrino background on long-range force searches Pole-skipping for massive fields and the Stueckelberg formalism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1