测量报告:从厄尔布鲁士(俄罗斯高加索)冰芯记录推断东南欧 18 世纪以来氨排放的变化

IF 5.2 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Atmospheric Chemistry and Physics Pub Date : 2024-07-05 DOI:10.5194/egusphere-2024-1381
Michel Legrand, Mstislav Vorobyev, Daria Bokuchava, Stanislav Kutuzov, Andreas Plach, Andreas Stohl, Alexandra Khairedinova, Vladimir Mikhalenko, Maria Vinogradova, Sabine Eckhardt, Susanne Preunkert
{"title":"测量报告:从厄尔布鲁士(俄罗斯高加索)冰芯记录推断东南欧 18 世纪以来氨排放的变化","authors":"Michel Legrand, Mstislav Vorobyev, Daria Bokuchava, Stanislav Kutuzov, Andreas Plach, Andreas Stohl, Alexandra Khairedinova, Vladimir Mikhalenko, Maria Vinogradova, Sabine Eckhardt, Susanne Preunkert","doi":"10.5194/egusphere-2024-1381","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> To investigate the historical levels of atmospheric ammonia (NH<sub>3</sub>) pollution in south-eastern Europe, a 182 m long ice core was extracted from Mount Elbrus in the Caucasus, Russia. This ice core contains a record of ammonium (NH<sub>4</sub><sup>+</sup>) levels from ~1750 CE (Common Era) to 2009 CE. The NH<sub>4</sub><sup>+</sup> ice core record indicates a 3.5-fold increase of annual concentrations from 34 ± 7 ng g<sup>-1</sup> (~1750–1830) to 117 ± 23 ng g<sup>-1</sup> over the recent decades (1980–2009). The increase remained moderate until 1950 CE (mean concentration of 49 ± 14 ng g<sup>-1</sup> over the 1830–1950 period), and then accelerated to reach a maximum close to 120 ng g<sup>-1 </sup>in 1989. This ice core trend is compared to estimated past anthropogenic NH<sub>3</sub> emissions in Europe by using state-of-the-art atmospheric transport modeling of submicron aerosols (FLEXPART model driven with 0.5° x 0.5° ERA5 reanalysis data). It is shown that in summer, when both vertical atmospheric mixing and agricultural NH<sub>3</sub> emissions are strengthened, the NH<sub>4</sub><sup>+</sup> ice core trend is in good agreement with the course of estimated NH<sub>3</sub> emissions from south-eastern Europe since ~1750 with a main contribution from south European Russia, Turkey, Georgia, and Ukraine. Examination of Mount Elbrus ice deposited over the second half of the 18<sup>th</sup> century when agricultural activities were less than 10% of those during the 1990s, suggest a pre-1750 annual NH<sub>4</sub><sup>+ </sup>ice concentration related to natural emissions of 25 ng g<sup>-1</sup>. This pre-1750 natural level mainly related to natural soil emissions represents ~20% of the 1980–2009 NH<sub>4</sub><sup>+ </sup>level, a level mainly related to current agricultural emissions that almost completely outweigh biogenic emissions from natural soils.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"25 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement Report: Changes of ammonia emissions since the 18th century in south-eastern Europe inferred from an Elbrus (Caucasus, Russia) ice core record\",\"authors\":\"Michel Legrand, Mstislav Vorobyev, Daria Bokuchava, Stanislav Kutuzov, Andreas Plach, Andreas Stohl, Alexandra Khairedinova, Vladimir Mikhalenko, Maria Vinogradova, Sabine Eckhardt, Susanne Preunkert\",\"doi\":\"10.5194/egusphere-2024-1381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> To investigate the historical levels of atmospheric ammonia (NH<sub>3</sub>) pollution in south-eastern Europe, a 182 m long ice core was extracted from Mount Elbrus in the Caucasus, Russia. This ice core contains a record of ammonium (NH<sub>4</sub><sup>+</sup>) levels from ~1750 CE (Common Era) to 2009 CE. The NH<sub>4</sub><sup>+</sup> ice core record indicates a 3.5-fold increase of annual concentrations from 34 ± 7 ng g<sup>-1</sup> (~1750–1830) to 117 ± 23 ng g<sup>-1</sup> over the recent decades (1980–2009). The increase remained moderate until 1950 CE (mean concentration of 49 ± 14 ng g<sup>-1</sup> over the 1830–1950 period), and then accelerated to reach a maximum close to 120 ng g<sup>-1 </sup>in 1989. This ice core trend is compared to estimated past anthropogenic NH<sub>3</sub> emissions in Europe by using state-of-the-art atmospheric transport modeling of submicron aerosols (FLEXPART model driven with 0.5° x 0.5° ERA5 reanalysis data). It is shown that in summer, when both vertical atmospheric mixing and agricultural NH<sub>3</sub> emissions are strengthened, the NH<sub>4</sub><sup>+</sup> ice core trend is in good agreement with the course of estimated NH<sub>3</sub> emissions from south-eastern Europe since ~1750 with a main contribution from south European Russia, Turkey, Georgia, and Ukraine. Examination of Mount Elbrus ice deposited over the second half of the 18<sup>th</sup> century when agricultural activities were less than 10% of those during the 1990s, suggest a pre-1750 annual NH<sub>4</sub><sup>+ </sup>ice concentration related to natural emissions of 25 ng g<sup>-1</sup>. This pre-1750 natural level mainly related to natural soil emissions represents ~20% of the 1980–2009 NH<sub>4</sub><sup>+ </sup>level, a level mainly related to current agricultural emissions that almost completely outweigh biogenic emissions from natural soils.\",\"PeriodicalId\":8611,\"journal\":{\"name\":\"Atmospheric Chemistry and Physics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Chemistry and Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2024-1381\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-1381","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要为了研究欧洲东南部大气氨(NH3)污染的历史水平,从俄罗斯高加索地区的厄尔布鲁士山提取了 182 米长的冰芯。该冰芯包含公元前约 1750 年(公元纪年)至公元 2009 年期间的氨(NH4+)水平记录。NH4+ 冰芯记录表明,在最近几十年(1980-2009 年),年浓度从 34 ± 7 纳克/克-1(约 1750-1830 年)增加到 117 ± 23 纳克/克-1,增加了 3.5 倍。在西元 1950 年之前,上升幅度一直不大(1830-1950 年期间的平均浓度为 49 ± 14 纳克 g-1),随后加速上升,1989 年达到最大值,接近 120 纳克 g-1。通过使用最先进的亚微米气溶胶大气传输模型(使用 0.5° x 0.5° ERA5 再分析数据驱动的 FLEXPART 模型),将这一冰芯趋势与欧洲过去的人为 NH3 排放量估计值进行了比较。结果表明,在垂直大气混合和农业 NH3 排放都加强的夏季,NH4+ 冰芯趋势与欧洲东南部自约 1750 年以来的 NH3 估计排放过程非常一致,主要来自欧洲南部的俄罗斯、土耳其、格鲁吉亚和乌克兰。对 18 世纪下半叶沉积的厄尔布鲁士山冰层进行的研究表明,1750 年前与自然排放相关的 NH4+ 冰层年浓度为 25 纳克 g-1。这一 1750 年前的自然水平主要与自然土壤排放有关,约占 1980-2009 年 NH4+ 水平的 20%,而这一水平主要与当前的农业排放有关,农业排放几乎完全超过了自然土壤的生物排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measurement Report: Changes of ammonia emissions since the 18th century in south-eastern Europe inferred from an Elbrus (Caucasus, Russia) ice core record
Abstract. To investigate the historical levels of atmospheric ammonia (NH3) pollution in south-eastern Europe, a 182 m long ice core was extracted from Mount Elbrus in the Caucasus, Russia. This ice core contains a record of ammonium (NH4+) levels from ~1750 CE (Common Era) to 2009 CE. The NH4+ ice core record indicates a 3.5-fold increase of annual concentrations from 34 ± 7 ng g-1 (~1750–1830) to 117 ± 23 ng g-1 over the recent decades (1980–2009). The increase remained moderate until 1950 CE (mean concentration of 49 ± 14 ng g-1 over the 1830–1950 period), and then accelerated to reach a maximum close to 120 ng g-1 in 1989. This ice core trend is compared to estimated past anthropogenic NH3 emissions in Europe by using state-of-the-art atmospheric transport modeling of submicron aerosols (FLEXPART model driven with 0.5° x 0.5° ERA5 reanalysis data). It is shown that in summer, when both vertical atmospheric mixing and agricultural NH3 emissions are strengthened, the NH4+ ice core trend is in good agreement with the course of estimated NH3 emissions from south-eastern Europe since ~1750 with a main contribution from south European Russia, Turkey, Georgia, and Ukraine. Examination of Mount Elbrus ice deposited over the second half of the 18th century when agricultural activities were less than 10% of those during the 1990s, suggest a pre-1750 annual NH4+ ice concentration related to natural emissions of 25 ng g-1. This pre-1750 natural level mainly related to natural soil emissions represents ~20% of the 1980–2009 NH4+ level, a level mainly related to current agricultural emissions that almost completely outweigh biogenic emissions from natural soils.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Chemistry and Physics
Atmospheric Chemistry and Physics 地学-气象与大气科学
CiteScore
10.70
自引率
20.60%
发文量
702
审稿时长
6 months
期刊介绍: Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere. The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.
期刊最新文献
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean Identifying decadal trends in deweathered concentrations of criteria air pollutants in Canadian urban atmospheres with machine learning approaches The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum Using a region-specific ice-nucleating particle parameterization improves the representation of Arctic clouds in a global climate model Evaluation of modelled versus observed non-methane volatile organic compounds at European Monitoring and Evaluation Programme sites in Europe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1