Michel Legrand, Mstislav Vorobyev, Daria Bokuchava, Stanislav Kutuzov, Andreas Plach, Andreas Stohl, Alexandra Khairedinova, Vladimir Mikhalenko, Maria Vinogradova, Sabine Eckhardt, Susanne Preunkert
{"title":"测量报告:从厄尔布鲁士(俄罗斯高加索)冰芯记录推断东南欧 18 世纪以来氨排放的变化","authors":"Michel Legrand, Mstislav Vorobyev, Daria Bokuchava, Stanislav Kutuzov, Andreas Plach, Andreas Stohl, Alexandra Khairedinova, Vladimir Mikhalenko, Maria Vinogradova, Sabine Eckhardt, Susanne Preunkert","doi":"10.5194/egusphere-2024-1381","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> To investigate the historical levels of atmospheric ammonia (NH<sub>3</sub>) pollution in south-eastern Europe, a 182 m long ice core was extracted from Mount Elbrus in the Caucasus, Russia. This ice core contains a record of ammonium (NH<sub>4</sub><sup>+</sup>) levels from ~1750 CE (Common Era) to 2009 CE. The NH<sub>4</sub><sup>+</sup> ice core record indicates a 3.5-fold increase of annual concentrations from 34 ± 7 ng g<sup>-1</sup> (~1750–1830) to 117 ± 23 ng g<sup>-1</sup> over the recent decades (1980–2009). The increase remained moderate until 1950 CE (mean concentration of 49 ± 14 ng g<sup>-1</sup> over the 1830–1950 period), and then accelerated to reach a maximum close to 120 ng g<sup>-1 </sup>in 1989. This ice core trend is compared to estimated past anthropogenic NH<sub>3</sub> emissions in Europe by using state-of-the-art atmospheric transport modeling of submicron aerosols (FLEXPART model driven with 0.5° x 0.5° ERA5 reanalysis data). It is shown that in summer, when both vertical atmospheric mixing and agricultural NH<sub>3</sub> emissions are strengthened, the NH<sub>4</sub><sup>+</sup> ice core trend is in good agreement with the course of estimated NH<sub>3</sub> emissions from south-eastern Europe since ~1750 with a main contribution from south European Russia, Turkey, Georgia, and Ukraine. Examination of Mount Elbrus ice deposited over the second half of the 18<sup>th</sup> century when agricultural activities were less than 10% of those during the 1990s, suggest a pre-1750 annual NH<sub>4</sub><sup>+ </sup>ice concentration related to natural emissions of 25 ng g<sup>-1</sup>. This pre-1750 natural level mainly related to natural soil emissions represents ~20% of the 1980–2009 NH<sub>4</sub><sup>+ </sup>level, a level mainly related to current agricultural emissions that almost completely outweigh biogenic emissions from natural soils.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"25 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement Report: Changes of ammonia emissions since the 18th century in south-eastern Europe inferred from an Elbrus (Caucasus, Russia) ice core record\",\"authors\":\"Michel Legrand, Mstislav Vorobyev, Daria Bokuchava, Stanislav Kutuzov, Andreas Plach, Andreas Stohl, Alexandra Khairedinova, Vladimir Mikhalenko, Maria Vinogradova, Sabine Eckhardt, Susanne Preunkert\",\"doi\":\"10.5194/egusphere-2024-1381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> To investigate the historical levels of atmospheric ammonia (NH<sub>3</sub>) pollution in south-eastern Europe, a 182 m long ice core was extracted from Mount Elbrus in the Caucasus, Russia. This ice core contains a record of ammonium (NH<sub>4</sub><sup>+</sup>) levels from ~1750 CE (Common Era) to 2009 CE. The NH<sub>4</sub><sup>+</sup> ice core record indicates a 3.5-fold increase of annual concentrations from 34 ± 7 ng g<sup>-1</sup> (~1750–1830) to 117 ± 23 ng g<sup>-1</sup> over the recent decades (1980–2009). The increase remained moderate until 1950 CE (mean concentration of 49 ± 14 ng g<sup>-1</sup> over the 1830–1950 period), and then accelerated to reach a maximum close to 120 ng g<sup>-1 </sup>in 1989. This ice core trend is compared to estimated past anthropogenic NH<sub>3</sub> emissions in Europe by using state-of-the-art atmospheric transport modeling of submicron aerosols (FLEXPART model driven with 0.5° x 0.5° ERA5 reanalysis data). It is shown that in summer, when both vertical atmospheric mixing and agricultural NH<sub>3</sub> emissions are strengthened, the NH<sub>4</sub><sup>+</sup> ice core trend is in good agreement with the course of estimated NH<sub>3</sub> emissions from south-eastern Europe since ~1750 with a main contribution from south European Russia, Turkey, Georgia, and Ukraine. Examination of Mount Elbrus ice deposited over the second half of the 18<sup>th</sup> century when agricultural activities were less than 10% of those during the 1990s, suggest a pre-1750 annual NH<sub>4</sub><sup>+ </sup>ice concentration related to natural emissions of 25 ng g<sup>-1</sup>. This pre-1750 natural level mainly related to natural soil emissions represents ~20% of the 1980–2009 NH<sub>4</sub><sup>+ </sup>level, a level mainly related to current agricultural emissions that almost completely outweigh biogenic emissions from natural soils.\",\"PeriodicalId\":8611,\"journal\":{\"name\":\"Atmospheric Chemistry and Physics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Chemistry and Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2024-1381\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-1381","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Measurement Report: Changes of ammonia emissions since the 18th century in south-eastern Europe inferred from an Elbrus (Caucasus, Russia) ice core record
Abstract. To investigate the historical levels of atmospheric ammonia (NH3) pollution in south-eastern Europe, a 182 m long ice core was extracted from Mount Elbrus in the Caucasus, Russia. This ice core contains a record of ammonium (NH4+) levels from ~1750 CE (Common Era) to 2009 CE. The NH4+ ice core record indicates a 3.5-fold increase of annual concentrations from 34 ± 7 ng g-1 (~1750–1830) to 117 ± 23 ng g-1 over the recent decades (1980–2009). The increase remained moderate until 1950 CE (mean concentration of 49 ± 14 ng g-1 over the 1830–1950 period), and then accelerated to reach a maximum close to 120 ng g-1 in 1989. This ice core trend is compared to estimated past anthropogenic NH3 emissions in Europe by using state-of-the-art atmospheric transport modeling of submicron aerosols (FLEXPART model driven with 0.5° x 0.5° ERA5 reanalysis data). It is shown that in summer, when both vertical atmospheric mixing and agricultural NH3 emissions are strengthened, the NH4+ ice core trend is in good agreement with the course of estimated NH3 emissions from south-eastern Europe since ~1750 with a main contribution from south European Russia, Turkey, Georgia, and Ukraine. Examination of Mount Elbrus ice deposited over the second half of the 18th century when agricultural activities were less than 10% of those during the 1990s, suggest a pre-1750 annual NH4+ ice concentration related to natural emissions of 25 ng g-1. This pre-1750 natural level mainly related to natural soil emissions represents ~20% of the 1980–2009 NH4+ level, a level mainly related to current agricultural emissions that almost completely outweigh biogenic emissions from natural soils.
期刊介绍:
Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere.
The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.