{"title":"对扩散介导重组的重组信号序列强度进行 RAGging。","authors":"Katherine JL Jackson","doi":"10.1111/imcb.12803","DOIUrl":null,"url":null,"abstract":"<p>In this article, we discuss new insights into the distinct mechanisms for V(D)J recombination for different immunoglobulin loci. This follows the recent revelation that recombination signal sequences (RSS) within the IGKV locus have evolved to be more efficient mediators of recombination activating gene (RAG) recombination compared to the same elements in the IGH locus. This difference in RSS strength is proposed to be driven by different molecular mechanisms for RAG-mediated recombination between the two loci.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12803","citationCount":"0","resultStr":"{\"title\":\"RAGging on recombination signal sequence strength for diffusion-mediated recombination\",\"authors\":\"Katherine JL Jackson\",\"doi\":\"10.1111/imcb.12803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we discuss new insights into the distinct mechanisms for V(D)J recombination for different immunoglobulin loci. This follows the recent revelation that recombination signal sequences (RSS) within the IGKV locus have evolved to be more efficient mediators of recombination activating gene (RAG) recombination compared to the same elements in the IGH locus. This difference in RSS strength is proposed to be driven by different molecular mechanisms for RAG-mediated recombination between the two loci.\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":179,\"journal\":{\"name\":\"Immunology & Cell Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12803\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunology & Cell Biology\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/imcb.12803\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology & Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imcb.12803","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
RAGging on recombination signal sequence strength for diffusion-mediated recombination
In this article, we discuss new insights into the distinct mechanisms for V(D)J recombination for different immunoglobulin loci. This follows the recent revelation that recombination signal sequences (RSS) within the IGKV locus have evolved to be more efficient mediators of recombination activating gene (RAG) recombination compared to the same elements in the IGH locus. This difference in RSS strength is proposed to be driven by different molecular mechanisms for RAG-mediated recombination between the two loci.
期刊介绍:
The Australasian Society for Immunology Incorporated (ASI) was created by the amalgamation in 1991 of the Australian Society for Immunology, formed in 1970, and the New Zealand Society for Immunology, formed in 1975. The aim of the Society is to encourage and support the discipline of immunology in the Australasian region. It is a broadly based Society, embracing clinical and experimental, cellular and molecular immunology in humans and animals. The Society provides a network for the exchange of information and for collaboration within Australia, New Zealand and overseas. ASI members have been prominent in advancing biological and medical research worldwide. We seek to encourage the study of immunology in Australia and New Zealand and are active in introducing young scientists to the discipline.