探索孔隙形状对传导和渗透的影响

IF 3.2 3区 生物学 Q2 BIOPHYSICS Biophysical journal Pub Date : 2024-09-17 Epub Date: 2024-07-06 DOI:10.1016/j.bpj.2024.07.010
David Seiferth, Philip C Biggin
{"title":"探索孔隙形状对传导和渗透的影响","authors":"David Seiferth, Philip C Biggin","doi":"10.1016/j.bpj.2024.07.010","DOIUrl":null,"url":null,"abstract":"<p><p>There are increasing numbers of ion channel structures featuring heteromeric subunit assembly, exemplified by synaptic α1β<sub>B</sub> glycine and α4β2 nicotinic receptors. These structures exhibit inherent pore asymmetry, but the relevance of this to function is unknown. Furthermore, molecular dynamics simulations performed on symmetrical homomeric channels often lead to thermal distortion whereby conformations of the resulting ensemble are also asymmetrical. When functionally annotating ion channels, researchers often rely on minimal constrictions determined via radius-profile calculations performed with computer programs, such as HOLE or CHAP, coupled with an assessment of pore hydrophobicity. However, such tools typically employ spherical probe particles, limiting their ability to accurately capture pore asymmetry. Here, we introduce an algorithm that employs ellipsoidal probe particles, enabling a more comprehensive representation of the pore geometry. Our analysis reveals that the use of nonspherical ellipsoids for pore characterization provides a more accurate and easily interpretable depiction of conductance. To quantify the implications of pore asymmetry on conductance, we systematically investigated carbon nanotubes with varying degrees of pore asymmetry as model systems. The conductance through these channels shows surprising effects that would otherwise not be predicted with spherical probes. The results have broad implications not only for the functional annotation of biological ion channels but also for the design of synthetic channel systems for use in areas such as water filtration. Furthermore, we make use of the more accurate characterization of channel pores to refine a physical conductance model to obtain a heuristic estimate for single-channel conductance. The code is freely available, obtainable as pip-installable python package and provided as a web service.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427812/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring the influence of pore shape on conductance and permeation.\",\"authors\":\"David Seiferth, Philip C Biggin\",\"doi\":\"10.1016/j.bpj.2024.07.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There are increasing numbers of ion channel structures featuring heteromeric subunit assembly, exemplified by synaptic α1β<sub>B</sub> glycine and α4β2 nicotinic receptors. These structures exhibit inherent pore asymmetry, but the relevance of this to function is unknown. Furthermore, molecular dynamics simulations performed on symmetrical homomeric channels often lead to thermal distortion whereby conformations of the resulting ensemble are also asymmetrical. When functionally annotating ion channels, researchers often rely on minimal constrictions determined via radius-profile calculations performed with computer programs, such as HOLE or CHAP, coupled with an assessment of pore hydrophobicity. However, such tools typically employ spherical probe particles, limiting their ability to accurately capture pore asymmetry. Here, we introduce an algorithm that employs ellipsoidal probe particles, enabling a more comprehensive representation of the pore geometry. Our analysis reveals that the use of nonspherical ellipsoids for pore characterization provides a more accurate and easily interpretable depiction of conductance. To quantify the implications of pore asymmetry on conductance, we systematically investigated carbon nanotubes with varying degrees of pore asymmetry as model systems. The conductance through these channels shows surprising effects that would otherwise not be predicted with spherical probes. The results have broad implications not only for the functional annotation of biological ion channels but also for the design of synthetic channel systems for use in areas such as water filtration. Furthermore, we make use of the more accurate characterization of channel pores to refine a physical conductance model to obtain a heuristic estimate for single-channel conductance. The code is freely available, obtainable as pip-installable python package and provided as a web service.</p>\",\"PeriodicalId\":8922,\"journal\":{\"name\":\"Biophysical journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427812/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpj.2024.07.010\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.07.010","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

越来越多的离子通道结构具有异构亚基组装的特点,例如突触α1βB甘氨酸受体和α4β2烟碱受体。这些结构表现出固有的孔隙不对称,但其与功能的相关性尚不清楚。此外,对对称的同源通道进行分子动力学模拟往往会导致热畸变,由此产生的构象组合也是不对称的。在对离子通道进行功能注释时,研究人员通常依赖于通过计算机程序(如 HOLE 或 CHAP)进行的半径轮廓计算所确定的最小收缩,再加上对孔隙疏水性的评估。然而,这些工具通常采用球形探针颗粒,限制了它们准确捕捉孔隙不对称的能力。在这里,我们引入了一种采用椭圆探针颗粒的算法,从而能够更全面地反映孔隙的几何形状。我们的分析表明,使用非球形椭圆体进行孔隙表征,可以更准确、更容易地描述电导。为了量化孔隙不对称对电导的影响,我们系统地研究了具有不同程度孔隙不对称的碳纳米管(CNTs)模型系统。通过这些通道的电导率显示出令人惊讶的效果,而这些效果是球形探针无法预测的。这些结果不仅对生物离子通道的功能注释,而且对设计用于水过滤等领域的合成通道系统具有广泛的意义。此外,我们还利用更精确的通道孔表征来完善物理电导模型,从而获得单通道电导的启发式估计。代码可免费获取,可作为 pip-installable python 软件包,也可作为网络服务提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the influence of pore shape on conductance and permeation.

There are increasing numbers of ion channel structures featuring heteromeric subunit assembly, exemplified by synaptic α1βB glycine and α4β2 nicotinic receptors. These structures exhibit inherent pore asymmetry, but the relevance of this to function is unknown. Furthermore, molecular dynamics simulations performed on symmetrical homomeric channels often lead to thermal distortion whereby conformations of the resulting ensemble are also asymmetrical. When functionally annotating ion channels, researchers often rely on minimal constrictions determined via radius-profile calculations performed with computer programs, such as HOLE or CHAP, coupled with an assessment of pore hydrophobicity. However, such tools typically employ spherical probe particles, limiting their ability to accurately capture pore asymmetry. Here, we introduce an algorithm that employs ellipsoidal probe particles, enabling a more comprehensive representation of the pore geometry. Our analysis reveals that the use of nonspherical ellipsoids for pore characterization provides a more accurate and easily interpretable depiction of conductance. To quantify the implications of pore asymmetry on conductance, we systematically investigated carbon nanotubes with varying degrees of pore asymmetry as model systems. The conductance through these channels shows surprising effects that would otherwise not be predicted with spherical probes. The results have broad implications not only for the functional annotation of biological ion channels but also for the design of synthetic channel systems for use in areas such as water filtration. Furthermore, we make use of the more accurate characterization of channel pores to refine a physical conductance model to obtain a heuristic estimate for single-channel conductance. The code is freely available, obtainable as pip-installable python package and provided as a web service.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
期刊最新文献
Laplace Approximation of J-factors for rigid base and rigid base pair models of DNA cyclization. Interacting myosin head dynamics and their modification by 2'-deoxy-ADP. A conserved H-bond network in human aquaporin-1 is necessary for native folding and oligomerization. A computational model for lipid-anchored polysaccharide export by the outer membrane protein GfcD. Estimation of vibrational spectra of Trp-cage protein from nonequilibrium metadynamics simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1